\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Efficient high-order implicit solvers for the dynamic of thin-walled beams with open cross section under external arbitrary loadings

  • * Corresponding author: Bouazza Braikat

    * Corresponding author: Bouazza Braikat 
Abstract Full Text(HTML) Figure(9) / Table(4) Related Papers Cited by
  • This paper aims to investigate, in large displacement and torsion context, the nonlinear dynamic behavior of thin-walled beams with open cross section subjected to various loadings by high-order implicit solvers. These homotopy transformations consist to modify the nonlinear discretized dynamic problem by introducing an arbitrary invertible pre-conditioner $ [K^\star] $ and an arbitrary path following parameter. The nonlinear strongly coupled equations of these structures are derived by using a $ 3D $ nonlinear dynamic model which accounts for large displacements and large torsion without any assumption on torsion angle amplitude. Coupling complex structural phenomena such that warping, bending-bending, and flexural-torsion are taken into account.

    Two examples of great practical interest of nonlinear dynamic problems of various thin-walled beams with open section are presented to validate the efficiency and accuracy of high-order implicit solvers. The obtained results show that the proposed homotopy transformations reveal a few number of matrix triangulations. A comparison with Abaqus code is presented.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Thin-walled beam with open cross section, co-ordinates of the point $M$ on the cross section contour

    Figure 2.  Axial force $N$, bending moments $M_{y}$ and $M_{z}$, bimoment $B_{\omega}$ and St-Venant torsion moment $M_{sv}$

    Figure 3.  Section beam under concentrated and distributed forces

    Figure 4.  External dynamical loading and its time evolution applied on the U-mono-symmetrical thin-walled beam with open cross section

    Figure 5.  Geometrical characteristics of sections $A$ and $B$

    Figure 6.  Response curves obtained by the high-order implicit solver $Alg_3$ and by Abaqus code, Time evolution of displacement components $(u(L, t), v(L, t), w(L, t), \theta_x(L, t))$

    Figure 7.  Cantilever bi-symmetrical beam with steel I cross section under eccentric loading and its time evolution

    Figure 8.  Thin-walled beam with steel I cross section under transverse eccentric force $F_{z}(t)$ and its point of application

    Figure 9.  Response curves obtained by the high-order implicit solver $Alg_3$, by Abaqus code and by Sapountzakis: Time evolution of components $(u(L, t), v(L, t), w(L, t), \theta_x(L, t))$

    Table 1.  Comparison between three solvers $Alg_1$, $Alg_2$ and $Alg_3$: Influence of time step

    Solvers $Alg_1$ $Alg_2$ $Alg_3$
    $\Delta t$Optimal order$Log|Res|$Optimal order$Log|Res|$Optimal order$Log|Res|$
    $10^{-3}$$10$$-3.73$ $9$$-3.71$$8$$-3.71$
    $2\, 10^{-3}$$12$$-3.72$$10$$-3.71$$9$$-3.70$
    $3\, 10^{-3}$$13$$-3.69$$11$$-3.67$$10$$-3.65$
     | Show Table
    DownLoad: CSV

    Table 2.  Comparison between three solvers $Alg_1$, $Alg_2$ and $Alg_3$: Effect of truncation order

    Solver $Alg_1$ $Alg_2$ $Alg_3$
    $p$$IM$$RHS$$CPU(s)$$IM$$RHS$$CPU(s)$$IM$$RHS$$CPU(s)$
    $7$ $a_{max}<1$ $a_{max}<1$ $a_{max}<1$
    $8$$a_{max}<1$$a_{max}<1$$2995$$32000$$3890$
    $9$$a_{max}<1$$2810$$36000$$4252$$2711$$36000$$4102$
    $10$2850400004900$2600$$40000$$4470$$2480$$40000$$4262$
    $15$6306000012376$612$$60000$$12023$$520$$60000$$10210$
    $20$$320$$80000$$25896$$309$$80000$$25000$$280$$80000$$22640$
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison between three solvers $Alg_1$, $Alg_2$ and $Alg_3$: Influence of time step

    Solver $Alg_1$ $Alg_2$ $Alg_3$
    $\Delta t$Optimal order$Log|Res|$Optimal order$Log|Res|$Optimal order$Log|Res|$
    $10^{-3}$$6$$-5.23$$4$$-5.2$$3$$-5.13$
    $2\, 10^{-3}$$12$$-5.10$$9$$-4.80$$7$$-4.62$
    $3\, 10^{-3}$$14$$-4.91$$11$$-4.79$$8$$-4.60$
    $4\, 10^{-3}$$15$$-4.88$$12$$-4.70$$10$$-4.55$
     | Show Table
    DownLoad: CSV

    Table 4.  Comparison between three solvers $Alg_1$, $Alg_2$ and $Alg_3$: Effect of truncation order

    Solver $Alg_1$ $Alg_2$ $Alg_3$
    $p$$IM$$RHS$$CPU(s)$$IM$$RHS$$CPU(s)$$IM$$RHS$$CPU(s)$
    $2$ $a_{max}<1$ $a_{max}<1$ $a_{max}<1$
    $3$$a_{max}<1$$a_{max}<1$$12$$600$$26$
    $4$$a_{max}<1$$13$$800$$42$$11$$800$$30$
    $5$$a_{max}<1$$8$$1000$$46$$6$$1000$$34$
    $6$$15$$1200$$102$$7$$1200$$54$$5$$1200$$36$
    $7$$4$$1400$$126$$2$$1400$$65$$1$$1400$$40$
     | Show Table
    DownLoad: CSV
  •   Abaqus, Version 6.11 Documentation, Dassautt Systemes Simulia Corp, Providence, RI, USA, 2011.
      E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer series in Computational Mathematics, 1990. doi: 10.1007/978-3-642-61257-2.
      R. D. Ambrosini , J. D. Riera  and  R. F. Danesi , Dynamic analysis of thin-walled and variable open section beams with shear flexibility, International Journal for Numerical Methods in Engineering, 38 (1995) , 2867-2885. 
      K. J. Bathe, Finite Elements Procedures, Prentice-Hall, New Jersey, 1996.
      J. L. Batoz and G. Dhatt, Modélisation des structures par éléments finis, Hermès, Paris, 1990.
      K. Behdinan , M. C. Stylianou  and  B. Tabarrok , Co-rotational dynamic analysis of flexible beams, Computer Methods in Applied Mechanics and Engineering, 154 (1998) , 151-161. 
      P. Betsch  and  P. Steinmann , Constrained dynamics of geometrically exact beams, Computational Mechanics, 31 (2003) , 49-59. 
      O. Bourihane , B. Braikat , M. Jamal , F. Mohri  and  N. Damil , Dynamic analysis of a thin-walled beam with open cross section subjected to dynamic loads using a high-order implicit algorithm, Engineering Structures, 120 (2016) , 133-146. 
      S. Boutmir , B. Braikat , M. Jamal , N. Damil , B. Cochelin  and  M. Potier-Ferry , Des solveurs implicites d'ordre supérieurs pour les problèmes de dynamique non linéaire des structures, Revue Européenne des Eléments Finis, 13 (2004) , 449-460. 
      M. A. Crisfield, Nonlinear Finite Elements Analysis of Solids and Structures, John Willey and Sons, 1991.
      E. Dale Martin , A technique for accelerating iterative convergence in numerical integration with application in transonic aerodynamics, Lectures notes in Physics, 47 (1976) , 123-139. 
      A. Ed-dinari , H. Mottaqui , B. Braikat , M. Jamal , F. Mohri  and  N. Damil , Large torsion analysis of thin-walled open sections beams by the asymptotic numerical method, Engineering Structures, 81 (2014) , 240-255. 
      Y. Guevel , G. Girault  and  J. M. Cadou , Numerical comparisons of high-order nonlinear solvers for the transient $ \textbf{N} $avier-$ \textbf{S} $tokes equations based on homotopy and perturbation techniques, Journal of Computational and Applied Mathematics, 289 (2015) , 356-370.  doi: 10.1016/j.cam.2014.12.008.
      D. Haijuan , Nonlinear free vibration analysis of asymmetric thin-walled circularly curved beams with open section, Thin-Walled Structures, 46 (2008) , 107-112. 
      M. Jamal , B. Braikat , S. Boutmir , N. Damil  and  M. Potier-Ferry , A high order implicit algorithm for solving instationary nonlinear problems, Computational Mechanics, 28 (2002) , 375-380.  doi: 10.1007/s00466-002-0301-7.
      T. N. Le , J. M. Battini  and  M. Hjiaj , Efficient formulation for dynamics of corotational 2D beams, Computational Mechanics, 48 (2011) , 153-161.  doi: 10.1007/s00466-011-0585-6.
      T. N. Le , J. M. Battini  and  M. Hjiaj , Corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled open cross-sections, Computer and Structures, 134 (2014) , 112-127. 
      S. Mesmoudi , A. Timesli , B. Braikat , H. Lahmam  and  H. Zahrouni , A 2D mechanical--thermal coupled model to simulate material mixing observed in friction stir welding process, Engineering with Computers, (2017) , 1-11. 
      F. Mohri , N. Damil  and  M. Potier Ferry , Large torsion finite element model for thin-walled beams, Computers and Structures, 86 (2008) , 671-683. 
      F. Mohri , L. Azrar  and  M. Potier-Ferry , Vibration analysis of buckled thin-walled beams with open sections, Journal of Sound and Vibration, 275 (2004) , 434-446. 
      F. Mohri , N. Damil  and  M. Potier-Ferry , Linear and nonlinear stability analyses of thin-walled beams with monsymmetric sections, Thin-Walled Structures, 48 (2010) , 299-315. 
      F. Mohri , N. Damil  and  M. Potier-Ferry , Large torsion finite element model for thin-walled beams, Computers and Structures, 86 (2008) , 671-683. 
      F. Mohri , A. Ed-dinari  and  N. Damil , A beam finite element for nonlinear analysis of thin-walled elements, Thin Walled Structures, 46 (2008) , 981-990. 
      H. Mottaqui , B. Braikat  and  N. Damil , Discussion about parameterization in the asymptotic numerical method: Application to nonlinear elastic shells, Computer Methods in Applied Mechanics and Engineering, 199 (2010) , 1701-1709.  doi: 10.1016/j.cma.2010.01.020.
      H. Mottaqui , B. Braikat  and  N. Damil , Local parameterization and the asymptotic numerical method, Mathematical Modelling of Natural Phenomena, 5 (2010) , 16-22. 
      N. Newmark , A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, Proceeding of ASCE, (1959) , 67-94. 
      E. J. Sapountzakis  and  I. C. Dikaros , Nonlinear flexural-torsional dynamic analysis of beams of variable doubly symmetric cross section-application to wind turbine towers, Nonlinear Dynamics, 73 (2013) , 199-227.  doi: 10.1007/s11071-013-0779-x.
      A. Timesli , B. Braikat , H. Lahmam  and  H. Zahrouni , A new algorithm based on moving least square method to simulate material mixing in friction stir welding, Engineering Analysis with Boundary Elements, 50 (2015) , 372-380. 
      V. Z. Vlasov, Thin walled elastic beams, Eyrolles, French translation: Pièces longues en voiles minces, Paris, 1965.
      O. C. Zienkiewicz and R. Taylor, The Finite Element Method, Solid and Fluid Mechanics and Non-linearity, Book Company, 1987.
  • 加载中

Figures(9)

Tables(4)

SHARE

Article Metrics

HTML views(1036) PDF downloads(441) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return