We derive several models in Physics of continuous media using Trotter theory of convergence of semi-groups of operators acting on variable spaces.
Citation: |
G. Allaire
, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992)
, 1482-1518.
doi: 10.1137/0523084.![]() ![]() ![]() |
|
J. T. Beale
, Eigenfunction expansions for objects floating in an open sea, Communications on Pure and Applied Mathematics, 30 (1977)
, 283-313.
doi: 10.1002/cpa.3160300303.![]() ![]() ![]() |
|
D. Blanchard
and G. A. Francfort
, Asymptotic thermoelastic behavior of flat plates, Quart. Appl. Math., 45 (1987)
, 645-667.
doi: 10.1090/qam/917015.![]() ![]() ![]() |
|
A. Bobrowski and M. Kimmel,
An operator semigroup in mathematical genetics, SpringerBriefs in Applied Sciences and Technology, Mathematical Methods, Springer, 2015.
doi: 10.1007/978-3-642-35958-3.![]() ![]() ![]() |
|
A. Bobrowski,
Convergence of one-parameter operator semi-groups in models of mathematical biology and elsewhere, New Mathematical Monographs, 30, Cambridge University Press, 2016.
doi: 10.1017/CBO9781316480663.![]() ![]() ![]() |
|
E. Bonetti, G. Bonfanti, C. Licht and R. Rossi, Dynamics of two linearly elastic bodies connected by a heavy thin soft viscoelastic layer, work in progress.
![]() |
|
S. Brahim-Otsmane
, G. A. Francfort
and F. Murat
, Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl., 71 (1992)
, 197-231.
![]() ![]() |
|
H. Brezis,
Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, Math. Studies, no. 5, North-Holland, Amsterdam, 1973.
![]() ![]() |
|
P. G. Ciarlet,
Mathematical elasticity, vol. II: theory of plates, North-Holland, Elsevier, 1997.
![]() ![]() |
|
G. A. Francfort
and P. Suquet
, Homogenization and mechanical dissipation in thermo-viscoelasticity, Archive Rat. Mech. Anal., 96 (1986)
, 265-293.
doi: 10.1007/BF00251909.![]() ![]() ![]() |
|
R. M. Garipov
, On the linear theory of gravity waves, Archive Rat. Mech. Anal., 24 (1967)
, 352-362.
doi: 10.1007/BF00253152.![]() ![]() ![]() |
|
P. Germain
, Q. S. Nguyen
and P. Suquet
, Continuum thermodynamics, J. Appl. Mech., 50 (1983)
, 1010-1020.
![]() |
|
B. Halphen
and Q. S. Nguyen
, Sur les matériaux standard généralisés, Journal de Mécanique, 14 (1975)
, 39-63.
![]() ![]() |
|
O. Iosifescu
, C. Licht
and G. Michaille
, Nonlinear boundary conditions in Kirchhoff-Love plate theory, J Elast, 96 (2009)
, 57-79.
doi: 10.1007/s10659-009-9198-0.![]() ![]() ![]() |
|
T. Kato
, Remarks on pseudo-resolvents and infinitesimal generators of semi-groups, Proc. Japan Acad., 35 (1959)
, 467-468.
doi: 10.3792/pja/1195524254.![]() ![]() ![]() |
|
C. Licht,
Etude théorique et numérique de l'évolution d'un système fluide-flotteur, Thèse de docteur ingénieur, Nantes, 1980.
![]() |
|
C. Licht,
Etude de quelques modèles décrivant les vibrations d'une structure élastique dans la mer, Rapport de recherche de l'Ecole Nationale Supérieure des Techniques Avancées ENSTA no163, 1982.
![]() |
|
C. Licht
, Evolution d'un système fluide-flotteur, Journal de Mécanique Théorique et Appliquée, 1 (1982)
, 211-235.
![]() ![]() |
|
C. Licht
, Trois modèles décrivant les vibrations d'une structure dans la mer, C. R. Acad. Sci. Paris, Ser. I, 296 (1983)
, 341-344.
![]() ![]() |
|
C. Licht
, Comportement asymptotique d'une bande dissipative mince de faible rigidité, C. R. Acad. Sci. Paris, Ser. I, 317 (1993)
, 429-433.
![]() ![]() |
|
C. Licht, Asymptotic behaviour of a thin dissipative layer, 2nd International Conference
on Nonlinear Mechanics, Beijing, China, August 23-26, (1993), Ed. W.Z. Chien, Beijing
University Press, 170-173.
![]() |
|
C. Licht
, Thin linearly viscoelastic Kelvin-Voigt plates, C. R. Mecanique, 341 (2013)
, 697-700.
![]() |
|
C. Licht, A. Léger and F. Lebon, Dynamics of elastic bodies connected by a thin adhesive
layer, Cinquièmes journées du GDR 'Étude de la propagation sonore en vue du contrôle non-destructif', Anglet, France, June 2-6, (2008), published in Ultrasonic wave propagation in
non homogeneous media, Springer Proceedings in Physics 128, A. Léger and M. Deschamps
Editors, Springer Verlag, 99-110.
![]() |
|
C. Licht
, A. Léger
, S. Orankitjaroen
and A. Ould Khaoua
, Dynamics of elastic bodies connected by a thin soft viscoelastic layer, J. Math. Pures Appl., 99 (2013)
, 685-703.
doi: 10.1016/j.matpur.2012.10.005.![]() ![]() ![]() |
|
C. Licht
, S. Orankitjaroen
, A. Ould Khaoua
and T. Weller
, Transient response of elastic bodies connected by a thin stiff viscoelastic layer with evanescent mass, C. R. Mecanique, 344 (2016)
, 736-743.
![]() |
|
J. L. Lions
, Réduction à des problèmes du type Cauchy-Kowaleska, Cours C.I.M.E., Cremonese, (1968)
, 269-280.
![]() ![]() |
|
J. L. Lions,
Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Gauthiers-Villars, Paris, 1968.
![]() ![]() |
|
A. Raoult
, Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation, Annali di Matematica Pura ed Applicata, 139 (1985)
, 361-400.
doi: 10.1007/BF01766863.![]() ![]() ![]() |
|
H. F. Trotter
, Approximation of semi-groups of operators, Pacific J. Math., 8 (1958)
, 887-919.
doi: 10.2140/pjm.1958.8.887.![]() ![]() ![]() |
|
T. Weller,
Etude des symétries et modèles de plaques en piézoélectricité linéarisée, Thèse, Montpellier, 2004.
![]() |
|
T. Weller
and C. Licht
, Analyse asymptotique de plaques minces linéairement piézoélectriques, C. R. Acad. Sci. Paris, Ser. I, 335 (2002)
, 309-314.
doi: 10.1016/S1631-073X(02)02457-3.![]() ![]() ![]() |
|
T. Weller
and C. Licht
, Asymptotic modeling of thin piezoelectric plates, Ann. Solid Struct. Mech., 1 (2010)
, 173-188.
![]() |
|
V. V. Zhikov
and S. E. Pastukhova
, On the Trotter-Kato theorem in a variable space, Funct. Anal. Appl., 41 (2007)
, 264-270.
doi: 10.1007/s10688-007-0024-9.![]() ![]() ![]() |