An adaptation of the Inverse Distance Weighting (IDW) method to the Grassmann manifold is carried out for interpolation of parametric POD bases. Our approach does not depend on the choice of a reference point on the Grassmann manifold to perform the interpolation, moreover our results are more accurate than those obtained in [
Citation: |
P. A. Absil
, R. Mahony
and R. Sepulchre
, Riemannian geometry of Grassmann manifolds with a view on algorithmic computation, Acta Applicandae Mathematicae, 80 (2004)
, 199-220.
doi: 10.1023/B:ACAP.0000013855.14971.91.![]() ![]() ![]() |
|
B. Afsari
, Riemannian Lp center of mass: Existence, uniqueness, and convexity, Proc. Amer. Math. Soc., 139 (2011)
, 655-673.
doi: 10.1090/S0002-9939-2010-10541-5.![]() ![]() ![]() |
|
N. Akkari
, A. Hamdouni
, E. Liberge
and M. Jazar
, A mathematical and numerical study of the sensitivity of a reduced order model by POD (ROM-POD), for a 2D incompressible fluid flow, Journal of Computational and Applied Mathematics, 270 (2014)
, 522-530.
doi: 10.1016/j.cam.2013.11.025.![]() ![]() ![]() |
|
N. Akkari
, A. Hamdouni
and M. Jazar
, Mathematical and numerical results on the sensitivity of the POD approximation relative to the Burgers equation, Applied Mathematics and Computation, 247 (2014)
, 951-961.
doi: 10.1016/j.amc.2014.09.005.![]() ![]() ![]() |
|
N. Akkari
, A. Hamdouni
, E. Liberge
and M. Jazar
, On the sensitivity of the POD technique for a parameterized quasi-nonlinear parabolic equation, Advanced Modeling and Simulation in Engineering Sciences, 2 (2014)
, 1-16.
![]() |
|
Y. Aminov, The Geometry of Submanifolds, Gordon and Breach Science Publishers, 2001.
![]() ![]() |
|
D. Amsallem
and C. Farhat
, An interpolation method for adapting reduced order models and application to aeroelasticity, Amer. Inst. Aeronaut. Astronaut., 46 (2008)
, 1803-1813.
![]() |
|
M. Azaïez
, F. Ben Belgacem
and T. Chacón Rebollo
, Error bounds for POD expansions of parameterized transient temperatures, Comput. Methods Appl. Mech. Engrg., 305 (2016)
, 501-511.
doi: 10.1016/j.cma.2016.02.016.![]() ![]() ![]() |
|
M. Azaïez
and F. Ben Belgacem
, Karhunen-Loève's truncation error for bivariate functions, Comput. Methods Appl. Mech. Engrg., 290 (2015)
, 57-72.
doi: 10.1016/j.cma.2015.02.019.![]() ![]() ![]() |
|
B. Denis de Senneville
, A. El Hamidi
and C. Moonen
, A direct PCA-based approach for real-time description of physiological organ deformations, IEEE Transactions on Medical Imaging, 34 (2015)
, 974-982.
![]() |
|
B. Haasdonk
, M. Ohlberger
and G. Rozza
, A reduced basis method for evolution schemes with parameter-dependent explicit operators, Electron. Trans. Numer. Anal., 32 (2008)
, 145-161.
![]() ![]() |
|
D. Hömberg
and S. Volkwein
, Control of laser surface hardening by a reduced-order approach utilizing proper orthogonal decomposition, Math. Comput. Model., 38 (2003)
, 1003-1028.
doi: 10.1016/S0895-7177(03)90102-6.![]() ![]() ![]() |
|
H. Karcher
, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30 (1977)
, 509-541.
doi: 10.1002/cpa.3160300502.![]() ![]() ![]() |
|
S. E. Kozlov
, Geometry of real Grassmannian manifolds, Zap. Nauchn. Semin. POMI, 246 (1997)
, 108-129.
![]() |
|
K. Kunisch
and S. Volkwein
, Control of Burgers equation by a reduced order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999)
, 345-371.
doi: 10.1023/A:1021732508059.![]() ![]() ![]() |
|
H. Le
, Estimation of Riemannian barycenters, LMS J. Comput. Math., 7 (2004)
, 193-200.
doi: 10.1112/S1461157000001091.![]() ![]() ![]() |
|
C. Leblond
, C. Allery
and C. Inard
, An optimal projection method for the reduce order modeling of incompressible flows, Comp. Meth, in Applied Mechanics and Engineering, 200 (2011)
, 2507-2527.
doi: 10.1016/j.cma.2011.04.020.![]() ![]() ![]() |
|
E. Longatte
, E. Liberge
, M. Pomarède
, J. F. Sigrist
and A. Hamdouni
, Parametric study of flow-induced vibrations in cylinder arrays under single-phase fluid cross flows using POD-ROM, Journal of Fluids and Structures, 78 (2018)
, 314-330.
![]() |
|
Y. Lu
, N. Blal
and A. Gravouil
, Space time POD based computational vademecums for parametric studies: Application to thermo-mechanical problems, Advanced Modeling and Simulation in Engineering Sciences, 5 (2018)
, 1-27.
![]() |
|
W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. Math. Studies, Princeton University Press, 1974.
![]() ![]() |
|
A. T. Patera and G. Rozza,
A Posteriori Error Estimation for Parametrized Partial Differential Equations, MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2007.
![]() |
|
P. Petersen, Riemannian Geometry, Springer-Verlag, 2006.
![]() ![]() |
|
D. Pigoli
, A. Menafoglio
and P. Secchi
, Kriging prediction for manifold-valued random fields, Journal of Multivariate Analysis, 145 (2016)
, 117-131.
doi: 10.1016/j.jmva.2015.12.006.![]() ![]() ![]() |
|
S. Roujol
, M. Ries
, B. Quesson
, C. Moonen
and B. Denis de Senneville
, Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs, Magnetic Resonance in Medicine, 63 (2010)
, 1080-7.
![]() |
|
L. Sirovich
, Turbulence and the dynamics of coherent structures, parts Ⅰ-Ⅲ, Quart. Appl. Math., 45 (1987)
, 561-571.
doi: 10.1090/qam/910462.![]() ![]() ![]() |
|
A. Tallet
, C. Allery
, C. Leblond
and E. Liberge
, A minimum residual projection to build coupled velocity-pressure POD-ROM for incompressible Navier-Stokes equations, Comm. in Nonlin. Science and Num. Simulation, 22 (2015)
, 909-932.
doi: 10.1016/j.cnsns.2014.09.009.![]() ![]() ![]() |
|
S. Volkwein
, Optimal control of a phase-field model using the proper orthogonal decomposition, Z. Angew. Math. Mech., 81 (2001)
, 83-97.
doi: 10.1002/1521-4001(200102)81:2<83::AID-ZAMM83>3.0.CO;2-R.![]() ![]() ![]() |
|
Y. C. Wong
, Differential geometry of Grassmann manifolds, Proc Natl Acad Sci U S A., 57 (1967)
, 589-594.
doi: 10.1073/pnas.57.3.589.![]() ![]() ![]() |
Geometrical properties of the flow around a circular cylinder
Isovalue of the velocity magnitude for Re = 180 at the first snapshot
Influence of the power
Comparison of the drag and lift coefficients obtained by the two interpolations methods IDW-G and Grassmann and those obtained with the full model for Re = 140 and 160
Comparison of the drag and lift coefficients obtained by the two interpolations methods IDW-G and Grassmann and those obtained with the full model for Re = 170 and 190