-
Previous Article
Subharmonic solutions for a class of Lagrangian systems
- DCDS-S Home
- This Issue
-
Next Article
The work of Norman Dancer
On a degree associated with the Gross-Pitaevskii system with a large parameter
School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia |
In a number of cases we calculate the sum of the degrees of the small positive solutions of the Gross-Pitaevskii system when the interaction is strong.
References:
[1] |
E. N. Dancer,
On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976/77), 283-300.
doi: 10.1017/S0308210500019648. |
[2] |
______, On the converse problem for the Gross-Pitaevskii equations with a large parameter,
Discrete Contin. Dyn. Syst., 34 (2014), 2481-2493.
doi: 10.3934/dcds.2014.34.2481. |
[3] |
E. N. Dancer and Y. Du,
Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.
doi: 10.1006/jdeq.1994.1156. |
[4] |
E. N. Dancer, K. Wang and Z. Zhang,
The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131.
doi: 10.1016/j.jfa.2011.10.013. |
[5] |
S. Fučík, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat., 101 (1976), 69-87. |
[6] |
B. Noris, H. Tavares, S. Terracini and G. Verzini,
Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302.
doi: 10.1002/cpa.20309. |
[7] |
R. D. Nussbaum, Some generalizations of the Borsuk-Ulam theorem, Proc. London Math. Soc., (3), 35 (1977), 136-158.
doi: 10.1112/plms/s3-35.1.136. |
show all references
References:
[1] |
E. N. Dancer,
On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976/77), 283-300.
doi: 10.1017/S0308210500019648. |
[2] |
______, On the converse problem for the Gross-Pitaevskii equations with a large parameter,
Discrete Contin. Dyn. Syst., 34 (2014), 2481-2493.
doi: 10.3934/dcds.2014.34.2481. |
[3] |
E. N. Dancer and Y. Du,
Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.
doi: 10.1006/jdeq.1994.1156. |
[4] |
E. N. Dancer, K. Wang and Z. Zhang,
The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131.
doi: 10.1016/j.jfa.2011.10.013. |
[5] |
S. Fučík, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat., 101 (1976), 69-87. |
[6] |
B. Noris, H. Tavares, S. Terracini and G. Verzini,
Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302.
doi: 10.1002/cpa.20309. |
[7] |
R. D. Nussbaum, Some generalizations of the Borsuk-Ulam theorem, Proc. London Math. Soc., (3), 35 (1977), 136-158.
doi: 10.1112/plms/s3-35.1.136. |
[1] |
Junbo Jia, Zhen Jin, Lili Chang, Xinchu Fu. Structural calculations and propagation modeling of growing networks based on continuous degree. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1215-1232. doi: 10.3934/mbe.2017062 |
[2] |
Wenying Zhang, Zhaohui Xing, Keqin Feng. A construction of bent functions with optimal algebraic degree and large symmetric group. Advances in Mathematics of Communications, 2020, 14 (1) : 23-33. doi: 10.3934/amc.2020003 |
[3] |
Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407 |
[4] |
Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic and Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013 |
[5] |
Rua Murray. Approximation error for invariant density calculations. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 535-557. doi: 10.3934/dcds.1998.4.535 |
[6] |
Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102 |
[7] |
Dayong Qi, Yuanyuan Ke. Large time behavior in a predator-prey system with pursuit-evasion interaction. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4531-4549. doi: 10.3934/dcdsb.2021240 |
[8] |
Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627 |
[9] |
Anita Mayo. Accurate two and three dimensional interpolation for particle mesh calculations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1205-1228. doi: 10.3934/dcdsb.2012.17.1205 |
[10] |
Armando G. M. Neves. Eigenmodes and eigenfrequencies of vibrating elliptic membranes: a Klein oscillation theorem and numerical calculations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 611-624. doi: 10.3934/cpaa.2010.9.611 |
[11] |
Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983 |
[12] |
C. Davini, F. Jourdan. Approximations of degree zero in the Poisson problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 267-281. doi: 10.3934/cpaa.2005.4.267 |
[13] |
Christian Bläsche, Shawn Means, Carlo R. Laing. Degree assortativity in networks of spiking neurons. Journal of Computational Dynamics, 2020, 7 (2) : 401-423. doi: 10.3934/jcd.2020016 |
[14] |
Dinh T. Tran, John A. G. Roberts. Linear degree growth in lattice equations. Journal of Computational Dynamics, 2019, 6 (2) : 449-467. doi: 10.3934/jcd.2019023 |
[15] |
Marc Chamberland, Victor H. Moll. Dynamics of the degree six Landen transformation. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 905-919. doi: 10.3934/dcds.2006.15.905 |
[16] |
Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4407-4431. doi: 10.3934/dcdsb.2020293 |
[17] |
M. Fernández-Martínez, Yolanda Guerrero-Sánchez, Pía López-Jornet. A novel approach to improve the accuracy of the box dimension calculations: Applications to trabecular bone quality. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1527-1534. doi: 10.3934/dcdss.2019105 |
[18] |
Jérôme Buzzi. The degree of Bowen factors and injective codings of diffeomorphisms. Journal of Modern Dynamics, 2020, 16: 1-36. doi: 10.3934/jmd.2020001 |
[19] |
Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure and Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725 |
[20] |
Joseph Bayara, André Conseibo, Moussa Ouattara, Artibano Micali. Train algebras of degree 2 and exponent 3. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1371-1386. doi: 10.3934/dcdss.2011.4.1371 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]