-
Previous Article
On good deformations of $ A_m $-singularities
- DCDS-S Home
- This Issue
-
Next Article
On a degree associated with the Gross-Pitaevskii system with a large parameter
Subharmonic solutions for a class of Lagrangian systems
1. | Department of Mathematics, Faculty of Sciences, University of Monastir, 5019 Monastir, Tunisia |
2. | Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland |
We prove that second order Hamiltonian systems $ -\ddot{u} = V_{u}(t,u) $ with a potential $ V\colon \mathbb{R} \times \mathbb{R} ^N\to \mathbb{R} $ of class $ C^1 $, periodic in time and superquadratic at infinity with respect to the space variable have subharmonic solutions. Our intention is to generalise a result on subharmonics for Hamiltonian systems with a potential satisfying the global Ambrosetti-Rabinowitz condition from [
References:
[1] |
A. Abbondandolo, Morse Theory for Hamiltonian Systems, Chapman and Hall/CRC Research Notes in Mathematics 425, Chapman and Hall/CRC, Boca Raton, FL, 2001. |
[2] |
A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progr. Nonlinear Differential Equations Appl. 10, Birkh ser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0319-3. |
[3] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[4] |
K. Ch. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[5] |
J. Ciesielski, J. Janczewska and N. Waterstraat,
On the existence of homoclinic type solutions of inhomogenous Lagrangian systems, Differential and Integral Equations, 30 (2017), 259-272.
|
[6] |
K. Gęba, M. Izydorek and A. Pruszko,
The Conley index in Hilbert spaces and its applications, Studia Math., 134 (1999), 217-233.
|
[7] |
M. Izydorek,
A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations, 170 (2001), 22-50.
doi: 10.1006/jdeq.2000.3818. |
[8] |
M. Izydorek,
Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonl. Analysis Ser. A: Theory Methods, 51 (2002), 33-66.
doi: 10.1016/S0362-546X(01)00811-2. |
[9] |
M. Izydorek and J. Janczewska,
Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389.
doi: 10.1016/j.jde.2005.06.029. |
[10] |
M. Izydorek and J. Janczewska,
The shadowing chain lemma for singular Hamiltonian systems involving strong forces, Cent. Eur. J. Math., 10 (2012), 1928-1939.
doi: 10.2478/s11533-012-0107-6. |
[11] |
J. Janczewska,
An approximative scheme of finding almost homoclinic solutions for a class of Newtonian systems, Topol. Methods Nonlinear Anal., 33 (2009), 169-177.
doi: 10.12775/TMNA.2009.012. |
[12] |
J. Janczewska,
Homoclinic solutions for a class of autonomous second order Hamiltonian systems with a superquadratic potential, Topol. Methods Nonlinear Anal., 36 (2010), 19-26.
|
[13] |
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. 74, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[14] |
P. H. Rabinowitz,
Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38.
doi: 10.1017/S0308210500024240. |
[15] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics 65, Amer. Math. Soc., Providence, RI, 1986.
doi: 10.1090/cbms/065. |
[16] |
E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 783-812.
doi: 10.1016/S0294-1449(16)30123-8. |
[17] |
K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438.
doi: 10.1016/S0294-1449(16)30285-2. |
show all references
References:
[1] |
A. Abbondandolo, Morse Theory for Hamiltonian Systems, Chapman and Hall/CRC Research Notes in Mathematics 425, Chapman and Hall/CRC, Boca Raton, FL, 2001. |
[2] |
A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progr. Nonlinear Differential Equations Appl. 10, Birkh ser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0319-3. |
[3] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[4] |
K. Ch. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[5] |
J. Ciesielski, J. Janczewska and N. Waterstraat,
On the existence of homoclinic type solutions of inhomogenous Lagrangian systems, Differential and Integral Equations, 30 (2017), 259-272.
|
[6] |
K. Gęba, M. Izydorek and A. Pruszko,
The Conley index in Hilbert spaces and its applications, Studia Math., 134 (1999), 217-233.
|
[7] |
M. Izydorek,
A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations, 170 (2001), 22-50.
doi: 10.1006/jdeq.2000.3818. |
[8] |
M. Izydorek,
Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonl. Analysis Ser. A: Theory Methods, 51 (2002), 33-66.
doi: 10.1016/S0362-546X(01)00811-2. |
[9] |
M. Izydorek and J. Janczewska,
Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389.
doi: 10.1016/j.jde.2005.06.029. |
[10] |
M. Izydorek and J. Janczewska,
The shadowing chain lemma for singular Hamiltonian systems involving strong forces, Cent. Eur. J. Math., 10 (2012), 1928-1939.
doi: 10.2478/s11533-012-0107-6. |
[11] |
J. Janczewska,
An approximative scheme of finding almost homoclinic solutions for a class of Newtonian systems, Topol. Methods Nonlinear Anal., 33 (2009), 169-177.
doi: 10.12775/TMNA.2009.012. |
[12] |
J. Janczewska,
Homoclinic solutions for a class of autonomous second order Hamiltonian systems with a superquadratic potential, Topol. Methods Nonlinear Anal., 36 (2010), 19-26.
|
[13] |
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. 74, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[14] |
P. H. Rabinowitz,
Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38.
doi: 10.1017/S0308210500024240. |
[15] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics 65, Amer. Math. Soc., Providence, RI, 1986.
doi: 10.1090/cbms/065. |
[16] |
E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 783-812.
doi: 10.1016/S0294-1449(16)30123-8. |
[17] |
K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438.
doi: 10.1016/S0294-1449(16)30285-2. |
[1] |
Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807 |
[2] |
Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 |
[3] |
Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050 |
[4] |
Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021279 |
[5] |
Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243 |
[6] |
Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021 |
[7] |
Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129 |
[8] |
Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883 |
[9] |
Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485 |
[10] |
Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293 |
[11] |
W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351 |
[12] |
Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385 |
[13] |
Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841 |
[14] |
Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021210 |
[15] |
Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75 |
[16] |
Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218 |
[17] |
Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure and Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421 |
[18] |
Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911 |
[19] |
Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579 |
[20] |
Gautier Picot. Energy-minimal transfers in the vicinity of the lagrangian point $L_1$. Conference Publications, 2011, 2011 (Special) : 1196-1205. doi: 10.3934/proc.2011.2011.1196 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]