[1]
|
Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, Vol. 1, 2006.
|
[2]
|
Z. Balanov, W. Krawcewicz and H. Ruan, Periodic solutions to O(2) × S1-symmetric variational problems: Equivariant gradient degree approach, Nonlinear Analysis and Optimization II. Optimization, 45-84, Contemp. Math., 514, Amer. Math. Soc., Providence, RI, 2010.
doi: 10.1090/conm/514/10099.
|
[3]
|
Z. Balanov, W. Krawcewicz, S. Rybicki and H. Steinlein, A short treatise on the equivariant degree theory and its applications, J. Fixed Point Theory App., 8 (2010), 1-74.
doi: 10.1007/s11784-010-0033-9.
|
[4]
|
I. Berezovik, C. García-Azpeitia and W. Krawcewicz, Symmetries of nonlinear vibrations in tetrahedral molecular configurations, DCDS-B (accepted September 2018).
|
[5]
|
T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Springer-Verlag, New York-Berlin, 1985.
doi: 10.1007/978-3-662-12918-0.
|
[6]
|
M. Dabkowski, W. Krawcewicz, Y. Lv and H-P. Wu, Multiple Periodic Solutions for Γ-symmetric Newtonian Systems, J. Diff. Eqns., 10 (2017), 6684-6730.
doi: 10.1016/j.jde.2017.07.027.
|
[7]
|
T. tom Dieck, Transformation Groups., Walter de Gruyter, 1987.
doi: 10.1515/9783110858372.312.
|
[8]
|
J. Fura, A. Ratajczak and S. Rybicki, Existence and continuation of periodic solutions of autonomous Newtonian systems, J. Diff. Eqns, 218 (2005), 216-252.
doi: 10.1016/j.jde.2005.04.004.
|
[9]
|
C. Garcia-Azpeitia and J. Ize, Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators, J. Diff. Eqns, 251 (2011), 3202-3227.
doi: 10.1016/j.jde.2011.06.021.
|
[10]
|
C. Garcia-Azpeitia and M. Tejada-Wriedt, Molecular chains interacting by Lennard-Jones and Coulomb forces, Quali. Theory Dyn. Syst., 16 (2017), 591-608.
doi: 10.1007/s12346-016-0221-0.
|
[11]
|
K. Geba, Degree for gradient equivariant maps and equivariant Conley index, in Topological Nonlinear Analysis Ⅱ (Frascati, 1995), Progr. Nonlinear Differential Equations App., 27, Birkhäuser, Boston, 1997,247-272.
|
[12]
|
A. Gołebiewska and S. Rybicki, Global bifurcations of critical orbits of G-invariant strongly indefinite functionals, Nonlinear Analysis, TMA, 74 (2011), 1823-1834.
doi: 10.1016/j.na.2010.10.055.
|
[13]
|
E. Goursat, Sur les substitutions orthogonales et les divisions régulières de l'espace, Annales scientifiques de l'École Normale Supérieure, 6 (1889), 9-102.
doi: 10.24033/asens.317.
|
[14]
|
J. Ize and A. Vignoli, Equivariant Degree Theory, vol. 8 of De Gruyter Series in Nonlinear Analysis and Applications, Berlin, Boston: De Gruyter., 2003.
doi: 10.1515/9783110200027.
|
[15]
|
J. E. Lennard-Jones, On the determination of molecular fields, Proc. R. Soc. Lond. A, 106 (1924), 463-477.
|
[16]
|
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Math. Sciences, Vol. 74, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2061-7.
|
[17]
|
K. H. Mayer, G-invariante Morse-Funktionen, Manuscripta Math., 63 (1989), 99-114.
doi: 10.1007/BF01173705.
|
[18]
|
H. Ruan and S. Rybicki, Applications of equivariant degree for gradient maps to symmetric Newtonian systems, Nonlinear Anal., 68 (2008), 1479-1516.
doi: 10.1016/j.na.2006.12.039.
|
[19]
|
S. Rybicki, Applications of degree for S1-equivariant gradient maps to variational nonlinear problems with S1-symmetries, Topol. Methods Nonlinear Anal., 9 (1997), 383-417.
doi: 10.12775/TMNA.1997.018.
|
[20]
|
E. H. Spanier, Algebraic Topology, McGraw-Hill Book Co, New York-Toronto-Lomdon, 1966.
|
[21]
|
H.-P. Wu, GAP program for the computations of the Burnside ring A(Γ × O(2)), https://bitbucket.org/psistwu/gammao2, developed at University of Texas at Dallas, 2016.
|
[22]
|
, Symmetry Resources at Otterbein University, http://symmetry.otterbein.edu/gallery/.
|