• Previous Article
    Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations
  • DCDS-S Home
  • This Issue
  • Next Article
    Solutions of nonlinear periodic Dirac equations with periodic potentials
November  2019, 12(7): 2063-2084. doi: 10.3934/dcdss.2019133

A Leslie-Gower predator-prey model with a free boundary

a. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

b. 

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada

* Corresponding author: Zhiming Guo, guozm@gzhu.edu.cn

Dedicated to Professor Norman Dancer on the occasion of his 70th birthday

Received  December 2017 Revised  June 2018 Published  December 2018

Fund Project: The work of ME and LW was supported by NSERC Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). YL and ZG acknowledge support from the National Natural Science Foundation of China (No.11771104), Program for Changjiang Scholars and Innovative Research Team in University (IRT-16R16).YL was supported by the Innovation Research for the Postgraduates of Guangzhou University under Grant No.2017GDJC-D05.

In this paper, we consider a Leslie-Gower predator-prey model in one-dimensional environment. We study the asymptotic behavior of two species evolving in a domain with a free boundary. Sufficient conditions for spreading success and spreading failure are obtained. We also derive sharp criteria for spreading and vanishing of the two species. Finally, when spreading is successful, we show that the spreading speed is between the minimal speed of traveling wavefront solutions for the predator-prey model on the whole real line (without a free boundary) and an elliptic problem that follows from the original model.

Citation: Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang. A Leslie-Gower predator-prey model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2063-2084. doi: 10.3934/dcdss.2019133
References:
[1]

M. A. Aziz-Alaoui and M. Daher-Okiye, Boundedness and Global Stability or a Predator-prey Model with Modified Leslie-Gower and Holling-Type Ⅱ Schemes, Applied Mathematics Letters, 16 (2003), 1069-1075.  doi: 10.1016/S0893-9659(03)90096-6.

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester 2003. doi: 10.1002/0470871296.

[3]

F. ChenL. Chen and X. Xie, On a Leslie-Gower predator-preymodel incorporating a prey refuge, Nonlinear Analysis: Real World Applications, 10 (2009), 2905-2908.  doi: 10.1016/j.nonrwa.2008.09.009.

[4]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800.  doi: 10.1137/S0036141099351693.

[5]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.

[6]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitior, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.  doi: 10.3934/dcdsb.2014.19.3105.

[7]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system, J.Dyn. Diff. Equat., 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.

[8]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783. doi: 10.1137/S0036139993253201.

[9]

A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697-699.  doi: 10.1016/S0893-9659(01)80029-X.

[10]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.  doi: 10.1088/0951-7715/20/8/004.

[11]

W. J. Ni and M. X. Wang, Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Differential Equations, 261 (2016), 4244-4274.  doi: 10.1016/j.jde.2016.06.022.

[12]

J. Wang, The selection for dispersal: A diffusive competition model with a free boundary, Z. Angew. Math. Phys., 66 (2015), 2143-2160.  doi: 10.1007/s00033-015-0519-9.

[13]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.

[14]

M. X. Wang, Spreading and vanishing in the diffusive prey-predator model with a free boundary, Commun. Nonlinear Sci. Numer. Simul., 23 (2015), 311-327.  doi: 10.1016/j.cnsns.2014.11.016.

[15]

M. X. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.  doi: 10.1016/j.nonrwa.2015.01.004.

[16]

M. X. Wang and J. F. Zhao, A free boundary problem for a predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.  doi: 10.1007/s10884-015-9503-5.

[17]

R. Z. Yang and J. J. Wei, The effect of delay on a diffusive predator-prey system with modified leslie-gower functional response, Bull. Malays. Math. Sci. Soc., 40 (2017), 51-73.  doi: 10.1007/s40840-015-0261-7.

[18]

J. F. Zhao and M. X. Wang, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal. Real World Appl., 16 (2014), 250-263.  doi: 10.1016/j.nonrwa.2013.10.003.

[19]

Y. Zhang and M. X. Wang, A free boundary problem of the ratio-dependent prey-predator model, Applicable Analysis, 94 (2015), 2147-2167.  doi: 10.1080/00036811.2014.979806.

[20]

J. Zhou, Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response, Z. Angew. Math. Phys., 65 (2014), 1-18.  doi: 10.1007/s00033-013-0315-3.

[21]

L. ZhouS. Zhang and Z. H. Liu, A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.  doi: 10.1016/j.amc.2016.05.008.

[22]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J.Differential Equations, 256 (2014), 1927-1954.  doi: 10.1016/j.jde.2013.12.008.

show all references

References:
[1]

M. A. Aziz-Alaoui and M. Daher-Okiye, Boundedness and Global Stability or a Predator-prey Model with Modified Leslie-Gower and Holling-Type Ⅱ Schemes, Applied Mathematics Letters, 16 (2003), 1069-1075.  doi: 10.1016/S0893-9659(03)90096-6.

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester 2003. doi: 10.1002/0470871296.

[3]

F. ChenL. Chen and X. Xie, On a Leslie-Gower predator-preymodel incorporating a prey refuge, Nonlinear Analysis: Real World Applications, 10 (2009), 2905-2908.  doi: 10.1016/j.nonrwa.2008.09.009.

[4]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800.  doi: 10.1137/S0036141099351693.

[5]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.

[6]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitior, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.  doi: 10.3934/dcdsb.2014.19.3105.

[7]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system, J.Dyn. Diff. Equat., 24 (2012), 873-895.  doi: 10.1007/s10884-012-9267-0.

[8]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783. doi: 10.1137/S0036139993253201.

[9]

A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697-699.  doi: 10.1016/S0893-9659(01)80029-X.

[10]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.  doi: 10.1088/0951-7715/20/8/004.

[11]

W. J. Ni and M. X. Wang, Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, J. Differential Equations, 261 (2016), 4244-4274.  doi: 10.1016/j.jde.2016.06.022.

[12]

J. Wang, The selection for dispersal: A diffusive competition model with a free boundary, Z. Angew. Math. Phys., 66 (2015), 2143-2160.  doi: 10.1007/s00033-015-0519-9.

[13]

M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.  doi: 10.1016/j.jde.2014.02.013.

[14]

M. X. Wang, Spreading and vanishing in the diffusive prey-predator model with a free boundary, Commun. Nonlinear Sci. Numer. Simul., 23 (2015), 311-327.  doi: 10.1016/j.cnsns.2014.11.016.

[15]

M. X. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.  doi: 10.1016/j.nonrwa.2015.01.004.

[16]

M. X. Wang and J. F. Zhao, A free boundary problem for a predator-prey model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.  doi: 10.1007/s10884-015-9503-5.

[17]

R. Z. Yang and J. J. Wei, The effect of delay on a diffusive predator-prey system with modified leslie-gower functional response, Bull. Malays. Math. Sci. Soc., 40 (2017), 51-73.  doi: 10.1007/s40840-015-0261-7.

[18]

J. F. Zhao and M. X. Wang, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal. Real World Appl., 16 (2014), 250-263.  doi: 10.1016/j.nonrwa.2013.10.003.

[19]

Y. Zhang and M. X. Wang, A free boundary problem of the ratio-dependent prey-predator model, Applicable Analysis, 94 (2015), 2147-2167.  doi: 10.1080/00036811.2014.979806.

[20]

J. Zhou, Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response, Z. Angew. Math. Phys., 65 (2014), 1-18.  doi: 10.1007/s00033-013-0315-3.

[21]

L. ZhouS. Zhang and Z. H. Liu, A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput., 289 (2016), 22-36.  doi: 10.1016/j.amc.2016.05.008.

[22]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J.Differential Equations, 256 (2014), 1927-1954.  doi: 10.1016/j.jde.2013.12.008.

[1]

Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2189-2219. doi: 10.3934/dcdsb.2021129

[2]

Changrong Zhu, Lei Kong. Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1187-1206. doi: 10.3934/dcdss.2017065

[3]

Yong Yao, Lingling Liu. Dynamics of a Leslie-Gower predator-prey system with hunting cooperation and prey harvesting. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021252

[4]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[5]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[6]

Jun Zhou. Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1127-1145. doi: 10.3934/cpaa.2015.14.1127

[7]

Rong Zou, Shangjiang Guo. Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4189-4210. doi: 10.3934/dcdsb.2020093

[8]

C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289

[9]

Baifeng Zhang, Guohong Zhang, Xiaoli Wang. Threshold dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021260

[10]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[11]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations and Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[12]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[13]

Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240

[14]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[15]

Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5003-5039. doi: 10.3934/dcdsb.2019042

[16]

Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4721-4736. doi: 10.3934/dcdsb.2020121

[17]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[18]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[19]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[20]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (277)
  • HTML views (599)
  • Cited by (2)

[Back to Top]