[1]
|
A. A. Agaian, Hadamard Matrices and their Applications, Springer-Verlag, Berlin, 1985.
doi: 10.1007/BFb0101073.
|
[2]
|
N. Barros e Sá and I. Bengtsson, Families of complex Hadamard matrices, Lin. Alg. Appl., 438 (2013), 2929-2957.
doi: 10.1016/j.laa.2012.10.029.
|
[3]
|
K. Beauchamp and R. Nicoara, Orthogonal maximal abelian *-subalgebras of the 6 × 6 matrices, Lin. Alg. Appl., 428 (2008), 1833-1853.
doi: 10.1016/j.laa.2007.10.023.
|
[4]
|
R. Craigen, Equivalence Classes of Inverse Orthogonal and Unit Hadamard, Bull. Austral. Math. Soc., 44 (1991), 109-115.
doi: 10.1017/S0004972700029506.
|
[5]
|
P. Diţǎ, Some results on the parametrization of complex Hadamard matrices, J. Phys. A, 20 (2004), 5355-5374.
doi: 10.1088/0305-4470/37/20/008.
|
[6]
|
D. Goyeneche, A new method to construct families of complex Hadamard matrices in even dimensions, J. Math. Phys., 54 (2013), 032201, 18pp.
doi: 10.1063/1.4794068.
|
[7]
|
U. Haagerup, Orthogonal maximal abelian *-subalgebras of the $n\times n$ matrices and cyclic n-roots, Operator Algebras and Quantum Field Theory (Rome), Cambridge, MA International Press, (1997), 296-322.
|
[8]
|
J. Hadamard, Resolution d'une question relative aux determinants, Bull. des Sci. Math., 17 (1893), 240-246.
|
[9]
|
A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer Series in Statistics, New York, Springer, 1999.
doi: 10.1007/978-1-4612-1478-6.
|
[10]
|
I. Jex, S. Stenholm and A. Zeilinger, Hamiltonian theory of a symmetric multiport, Opt. Commun., 117 (1995), 95-101.
doi: 10.1016/0030-4018(95)00078-M.
|
[11]
|
B. R. Karlsson, BCCB complex Hadamard matrices of order 9, and MUBs, Lin. Alg. Appl., 504 (2016), 309-324.
doi: 10.1016/j.laa.2016.04.012.
|
[12]
|
B. R. Karlsson, Two-parameter complex Hadamard matrices for N = 6, J. Math. Phys., 50 (2009), 082104, 8pp.
doi: 10.1063/1.3198230.
|
[13]
|
B. R. Karlsson, Three-parameter complex Hadamard matrices of order 6, Lin. Alg. Appl., 434 (2011), 247-258.
doi: 10.1016/j.laa.2010.08.020.
|
[14]
|
P. H. J. Lampio, F. Szöllősi and P. R. J. Östergård, The quaternary complex Hadamard matrices of orders 10, 12, and 14, Discrete Mathematics, 313 (2013), 189-206.
doi: 10.1016/j.disc.2012.10.001.
|
[15]
|
T. K. Leen, A coordinate-independent center manifold reduction, Phys. Lett. A, 174 (1993), 89-93.
doi: 10.1016/0375-9601(93)90548-E.
|
[16]
|
D. W. Leung, Simulation and reversal of n-qubit Hamiltonians using Hadamard matrices, J. Mod. Opt., 49 (2002), 1199-1217.
doi: 10.1080/09500340110109674.
|
[17]
|
M. Matolcsi, J. Réffy and F. Szöllősi, Constructions of complex Hadamard matrices via tiling abelian groups, Open Syst. Inf. Dyn., 14 (2007), 247-263.
doi: 10.1007/s11080-007-9050-6.
|
[18]
|
D. McNulty and S. Weigert, Isolated Hadamard matrices from mutually unbiased product bases, J. Math. Phys., 53 (2012), 122202, 16pp..
doi: 10.1063/1.4764884.
|
[19]
|
J. Meiss, Differential Dynamical Systems, SIAM, (2007).
doi: 10.1137/1.9780898718232.
|
[20]
|
M. Reck, A. Zeilinger, H. J. Bernstein and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett., 73 (1994), 58-61.
doi: 10.1103/PhysRevLett.73.58.
|
[21]
|
F. Szöllősi and M. Matolcsi, Towards a classification of 6 × 6 complex Hadamard matrices, Open Syst. Inf. Dyn., 15 (2008), 93-108.
doi: 10.1142/S1230161208000092.
|
[22]
|
F. Szöllősi, Complex Hadamard matrices of order 6: a four-parameter family, J. London Math. Soc., 85 (2012), 616-32.
doi: 10.1112/jlms/jdr052.
|
[23]
|
F. Szöllősi, Parametrizing complex Hadamard matrices, European J. Combin., 29 (2008), 1219-1234.
doi: 10.1016/j.ejc.2007.06.009.
|
[24]
|
W. Tadej and K. Życzkowski, A concise guide to complex Hadamard matrices, Open Syst. Inform. Dyn., 13 (2006), 133-177.
doi: 10.1007/s11080-006-8220-2.
|
[25]
|
W. Tadej and K. Życzkowski, Defect of a unitary matrix, Lin. Alg. Appl., 429 (2008), 447-481.
doi: 10.1016/j.laa.2008.02.036.
|
[26]
|
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-97149-5.
|
[27]
|
R. F. Werner, All teleportation and dense coding schemes, J. Phys. A: Math. Gen., 34 (2001), 7081-7094.
doi: 10.1088/0305-4470/34/35/332.
|