
-
Previous Article
Hereditarily non uniformly perfect sets
- DCDS-S Home
- This Issue
-
Next Article
On a semigroup problem
Stable sets of planar homeomorphisms with translation pseudo-arcs
Departamento de Geometría y Topología, Universidad Complutense de Madrid, Spain |
$ n ∈ {\mathbb N}$ |
$ g_n$ |
$ Fix(g_n)=\{0\}$ |
$ g_n$ |
$ 0$ |
$ i_{{\mathbb R}^2}(g_n,0)$ |
$ -n$ |
$ g_n$ |
$ 0$ |
$ n+1$ |
$ \{S_{j}\}_{j ∈ \{1,2, \dots, n+1\}}$ |
$ \{U_{j}\}_{j ∈ \{1,2, \dots, n+1\}}$ |
$ S_i \cap S_j= \{0\} = U_i \cap U_j$ |
$ i, j ∈ \{1,2, \dotsn+1\}$ |
$ i\ne j$ |
$ S_i \cap U_j= \{0\}$ |
$ i, j ∈ \{1,2, \dots n+1\}$ |
$ j ∈ \{1,2, \dots n+1\}$ |
$ S_j \setminus\{0\}$ |
$ U_j \setminus \{0\}$ |
$ K_j\subset S_j $ |
$ p_{j\star} , g_n(p_{j\star}) ∈ K_j$ |
$ g_n(K_j)\cap K_j=\{ g_n(p_{j\star} )\} $ |
$S_j\setminus \{ 0\}=\bigcup\limits_{m=-∞}^{∞} g_n^m (K_j)$ |
$ U_j$ |
References:
[1] |
S. Baldwin and E. E. Slaminka,
A stable/unstable "manifold" theorem for area preserving homeomorphisms of two dimensions, Proc. Amer. Math. Soc., 109 (1990), 823-828.
doi: 10.2307/2048225. |
[2] |
R. H. Bing,
Concerning hereditarily indecomposable compacta, Pacific J. Math., 1 (1951), 43-51.
doi: 10.2140/pjm.1951.1.43. |
[3] |
K. Borsuk, Theory of Shape, Monografie Matematyczne 59, PWN, Warsaw, 1975. |
[4] |
L. E. Brouwer,
Beweis des ebenen Translationssatzes, Math. Annalen, 72 (1912), 37-54.
doi: 10.1007/BF01456888. |
[5] |
M. Brown,
A new proof of Brouwer's lemma on translation arcs, Houston J. Math., 10 (1984), 35-41.
|
[6] |
M. Brown,
Homeomorphisms of two-dimensional manifolds, Houston Math. J., 11 (1985), 455-469.
|
[7] |
R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foreman Co. Glenview Illinois, London, 1971. |
[8] |
J. Campos and R. Ortega,
Homeomorphisms of the disk with trivial dynamics and extinction of competitive systems, Journal Diff. Equations, 138 (1997), 157-170.
doi: 10.1006/jdeq.1997.3265. |
[9] |
C. O. Christenson and W. L. Voxman, Aspects of Topology, BCS Associates, Moscow, Idaho, 1998. |
[10] |
E. N. Dancer and R. Ortega,
The index or Lyapunov stable fixed points, Journal Dynamics and Diff. Equations, 6 (1994), 631-637.
doi: 10.1007/BF02218851. |
[11] |
A. Dold,
Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology, 4 (1965), 1-8.
doi: 10.1016/0040-9383(65)90044-3. |
[12] |
M. Handel,
A pathological area preserving $ C^{∞}$ diffeomorphism of the plane, Proc. Amer. Math. Soc., 86 (1982), 163-168.
doi: 10.2307/2044419. |
[13] |
F. Le Roux, Homomorphismes de surfaces - Thor$ \grave{e}$mes de la fleur de Leau-Fatou et de la variété stable,
Astrisque, 292 (2004), Vi+210pp. |
[14] |
R. D. Nussbaum, The Fixed Point Index and Some Applications, Sminaire de Mathmatiques suprieures, Les Presses de L'Universit de Montral, 1985. |
[15] |
F. R. Ruiz del Portal and J. M. Salazar,
Fixed point index of iterations of local homeomorphisms of the plane: A Conley-index approach, Topology, 41 (2002), 1199-1212.
doi: 10.1016/S0040-9383(01)00035-0. |
[16] |
F. R. Ruiz del Portal and J. M. Salazar,
A stable/unstable manifold theorem for local homeomorphisms of the plane, Ergodic Th. and Dynamical Systems, 25 (2005), 301-317.
doi: 10.1017/S0143385704000367. |
[17] |
F. R. Ruiz del Portal and J. M. Salazar, A Poincar formula for the fixed point indices of the iterations of arbitrary planar homeomorphisms, Fixed Point Theory Appl., (2010), ID233069, 31pp.
doi: 10.1155/2010/323069. |
show all references
References:
[1] |
S. Baldwin and E. E. Slaminka,
A stable/unstable "manifold" theorem for area preserving homeomorphisms of two dimensions, Proc. Amer. Math. Soc., 109 (1990), 823-828.
doi: 10.2307/2048225. |
[2] |
R. H. Bing,
Concerning hereditarily indecomposable compacta, Pacific J. Math., 1 (1951), 43-51.
doi: 10.2140/pjm.1951.1.43. |
[3] |
K. Borsuk, Theory of Shape, Monografie Matematyczne 59, PWN, Warsaw, 1975. |
[4] |
L. E. Brouwer,
Beweis des ebenen Translationssatzes, Math. Annalen, 72 (1912), 37-54.
doi: 10.1007/BF01456888. |
[5] |
M. Brown,
A new proof of Brouwer's lemma on translation arcs, Houston J. Math., 10 (1984), 35-41.
|
[6] |
M. Brown,
Homeomorphisms of two-dimensional manifolds, Houston Math. J., 11 (1985), 455-469.
|
[7] |
R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foreman Co. Glenview Illinois, London, 1971. |
[8] |
J. Campos and R. Ortega,
Homeomorphisms of the disk with trivial dynamics and extinction of competitive systems, Journal Diff. Equations, 138 (1997), 157-170.
doi: 10.1006/jdeq.1997.3265. |
[9] |
C. O. Christenson and W. L. Voxman, Aspects of Topology, BCS Associates, Moscow, Idaho, 1998. |
[10] |
E. N. Dancer and R. Ortega,
The index or Lyapunov stable fixed points, Journal Dynamics and Diff. Equations, 6 (1994), 631-637.
doi: 10.1007/BF02218851. |
[11] |
A. Dold,
Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology, 4 (1965), 1-8.
doi: 10.1016/0040-9383(65)90044-3. |
[12] |
M. Handel,
A pathological area preserving $ C^{∞}$ diffeomorphism of the plane, Proc. Amer. Math. Soc., 86 (1982), 163-168.
doi: 10.2307/2044419. |
[13] |
F. Le Roux, Homomorphismes de surfaces - Thor$ \grave{e}$mes de la fleur de Leau-Fatou et de la variété stable,
Astrisque, 292 (2004), Vi+210pp. |
[14] |
R. D. Nussbaum, The Fixed Point Index and Some Applications, Sminaire de Mathmatiques suprieures, Les Presses de L'Universit de Montral, 1985. |
[15] |
F. R. Ruiz del Portal and J. M. Salazar,
Fixed point index of iterations of local homeomorphisms of the plane: A Conley-index approach, Topology, 41 (2002), 1199-1212.
doi: 10.1016/S0040-9383(01)00035-0. |
[16] |
F. R. Ruiz del Portal and J. M. Salazar,
A stable/unstable manifold theorem for local homeomorphisms of the plane, Ergodic Th. and Dynamical Systems, 25 (2005), 301-317.
doi: 10.1017/S0143385704000367. |
[17] |
F. R. Ruiz del Portal and J. M. Salazar, A Poincar formula for the fixed point indices of the iterations of arbitrary planar homeomorphisms, Fixed Point Theory Appl., (2010), ID233069, 31pp.
doi: 10.1155/2010/323069. |
[1] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[2] |
Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 |
[3] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[4] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial and Management Optimization, 2022, 18 (2) : 773-794. doi: 10.3934/jimo.2020178 |
[5] |
Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022060 |
[6] |
Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911 |
[7] |
Deissy M. S. Castelblanco. Restrictions on rotation sets for commuting torus homeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5257-5266. doi: 10.3934/dcds.2016030 |
[8] |
Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015 |
[9] |
Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451 |
[10] |
Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797 |
[11] |
Habib ur Rehman, Poom Kumam, Yusuf I. Suleiman, Widaya Kumam. An adaptive block iterative process for a class of multiple sets split variational inequality problems and common fixed point problems in Hilbert spaces. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022007 |
[12] |
Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347 |
[13] |
Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403 |
[14] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[15] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045 |
[16] |
E. N. Dancer, Norimichi Hirano. Existence of stable and unstable periodic solutions for semilinear parabolic problems. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 207-216. doi: 10.3934/dcds.1997.3.207 |
[17] |
V. Carmona, E. Freire, E. Ponce, F. Torres. The continuous matching of two stable linear systems can be unstable. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 689-703. doi: 10.3934/dcds.2006.16.689 |
[18] |
Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555 |
[19] |
Thierry Gallay, Guido Schneider, Hannes Uecker. Stable transport of information near essentially unstable localized structures. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 349-390. doi: 10.3934/dcdsb.2004.4.349 |
[20] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]