-
Previous Article
Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations
- DCDS-S Home
- This Issue
-
Next Article
Stabilization in a chemotaxis model for virus infection
Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity
Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany |
$ \begin{align*} \left\{ \begin{array}{r@{\, }l@{\quad}l@{\quad}l@{\, }c} u_{t}& = \Delta u-\, \chi\nabla\!\cdot(\frac{u}{v}\nabla v), \ &x\in\Omega, & t>0, \\ 0& = \Delta v-\, v+u, \ &x\in\Omega, & t>0, \\ \frac{\partial u}{\partial\nu}& = \frac{\partial v}{\partial\nu} = 0, &x\in\partial \Omega, & t>0, \\ u(&x, 0) = u_0(x), \ &x\in\Omega, & \end{array}\right. \end{align*} $ |
$ \Omega\subset\mathbb{R}^n $ |
$ (n\geq2) $ |
$ 0<\chi<\frac{n}{n-2} $ |
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
P. Biler,
Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347-359.
|
[3] |
T. Black, Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system in 2D, J. Differential Equations, 265 (2018), 2296–2339.
doi: 10.1016/j.jde.2018.04.035. |
[4] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. |
[5] |
H. Brezis and W. A. Strauss,
Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973), 565-590.
doi: 10.2969/jmsj/02540565. |
[6] |
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), Art. 107, 39 pp.
doi: 10.1007/s00526-016-1027-2. |
[7] |
K. Fujie,
Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045. |
[8] |
K. Fujie and T. Senba,
Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.
doi: 10.1088/0951-7715/29/8/2417. |
[9] |
K. Fujie and T. Senba,
Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 81-102.
doi: 10.3934/dcdsb.2016.21.81. |
[10] |
K. Fujie, M. Winkler and T. Yokota,
Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224.
doi: 10.1002/mma.3149. |
[11] |
T. Hillen and K. J. Painter,
A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[12] |
D. Horstmann,
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
|
[13] |
S. Itô, Diffusion Equations, volume 114 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992. |
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[15] |
J. Lankeit,
A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.
doi: 10.1002/mma.3489. |
[16] |
J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 49, 33pp.
doi: 10.1007/s00030-017-0472-8. |
[17] |
M. Mizukami and T. Yokota,
A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity, Math. Nachr., 290 (2017), 2648-2660.
doi: 10.1002/mana.201600399. |
[18] |
T. Nagai and T. Senba,
Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156.
|
[19] |
G. Rosen,
Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 671-674.
doi: 10.1007/BF02460738. |
[20] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96.
doi: 10.1007/BF01762360. |
[21] |
C. Stinner and M. Winkler,
Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.
doi: 10.1016/j.nonrwa.2011.07.006. |
[22] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[23] |
Y. Tao and M. Winkler,
Persistence of mass in a chemotaxis system with logistic source, J. Differential Equations, 259 (2015), 6142-6161.
doi: 10.1016/j.jde.2015.07.019. |
[24] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[25] |
M. Winkler,
Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.
doi: 10.1002/mma.1346. |
[26] |
M. Winkler,
Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.
doi: 10.1137/140979708. |
[27] |
M. Winkler,
The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26 (2016), 987-1024.
doi: 10.1142/S0218202516500238. |
show all references
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
P. Biler,
Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347-359.
|
[3] |
T. Black, Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system in 2D, J. Differential Equations, 265 (2018), 2296–2339.
doi: 10.1016/j.jde.2018.04.035. |
[4] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. |
[5] |
H. Brezis and W. A. Strauss,
Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973), 565-590.
doi: 10.2969/jmsj/02540565. |
[6] |
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), Art. 107, 39 pp.
doi: 10.1007/s00526-016-1027-2. |
[7] |
K. Fujie,
Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045. |
[8] |
K. Fujie and T. Senba,
Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.
doi: 10.1088/0951-7715/29/8/2417. |
[9] |
K. Fujie and T. Senba,
Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 81-102.
doi: 10.3934/dcdsb.2016.21.81. |
[10] |
K. Fujie, M. Winkler and T. Yokota,
Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224.
doi: 10.1002/mma.3149. |
[11] |
T. Hillen and K. J. Painter,
A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[12] |
D. Horstmann,
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
|
[13] |
S. Itô, Diffusion Equations, volume 114 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992. |
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[15] |
J. Lankeit,
A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.
doi: 10.1002/mma.3489. |
[16] |
J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 49, 33pp.
doi: 10.1007/s00030-017-0472-8. |
[17] |
M. Mizukami and T. Yokota,
A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity, Math. Nachr., 290 (2017), 2648-2660.
doi: 10.1002/mana.201600399. |
[18] |
T. Nagai and T. Senba,
Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156.
|
[19] |
G. Rosen,
Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 671-674.
doi: 10.1007/BF02460738. |
[20] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96.
doi: 10.1007/BF01762360. |
[21] |
C. Stinner and M. Winkler,
Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.
doi: 10.1016/j.nonrwa.2011.07.006. |
[22] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[23] |
Y. Tao and M. Winkler,
Persistence of mass in a chemotaxis system with logistic source, J. Differential Equations, 259 (2015), 6142-6161.
doi: 10.1016/j.jde.2015.07.019. |
[24] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[25] |
M. Winkler,
Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.
doi: 10.1002/mma.1346. |
[26] |
M. Winkler,
Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.
doi: 10.1137/140979708. |
[27] |
M. Winkler,
The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26 (2016), 987-1024.
doi: 10.1142/S0218202516500238. |
[1] |
Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324 |
[2] |
Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045 |
[3] |
Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231 |
[4] |
Qi Wang. Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function. Communications on Pure and Applied Analysis, 2015, 14 (2) : 383-396. doi: 10.3934/cpaa.2015.14.383 |
[5] |
Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463 |
[6] |
Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 |
[7] |
Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 |
[8] |
Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821 |
[9] |
Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705 |
[10] |
Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147 |
[11] |
Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334 |
[12] |
Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037 |
[13] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6155-6171. doi: 10.3934/dcdsb.2021011 |
[14] |
T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125 |
[15] |
Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861 |
[16] |
Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168 |
[17] |
Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170 |
[18] |
Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31 |
[19] |
Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050 |
[20] |
Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]