We investigate the parabolic-elliptic Keller-Segel model
$ \begin{align*} \left\{ \begin{array}{r@{\, }l@{\quad}l@{\quad}l@{\, }c} u_{t}& = \Delta u-\, \chi\nabla\!\cdot(\frac{u}{v}\nabla v), \ &x\in\Omega, & t>0, \\ 0& = \Delta v-\, v+u, \ &x\in\Omega, & t>0, \\ \frac{\partial u}{\partial\nu}& = \frac{\partial v}{\partial\nu} = 0, &x\in\partial \Omega, & t>0, \\ u(&x, 0) = u_0(x), \ &x\in\Omega, & \end{array}\right. \end{align*} $
in a bounded domain $ \Omega\subset\mathbb{R}^n $ $ (n\geq2) $ with smooth boundary.
We introduce a notion of generalized solvability which is consistent with the classical solution concept, and we show that whenever $ 0<\chi<\frac{n}{n-2} $ and the initial data satisfy only certain requirements on regularity and on positivity, one can find at least one global generalized solution.
Citation: |
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
[2] |
P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347-359.
![]() ![]() |
[3] |
T. Black, Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system in 2D, J. Differential Equations, 265 (2018), 2296–2339.
doi: 10.1016/j.jde.2018.04.035.![]() ![]() ![]() |
[4] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.
![]() ![]() |
[5] |
H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973), 565-590.
doi: 10.2969/jmsj/02540565.![]() ![]() ![]() |
[6] |
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), Art. 107, 39 pp.
doi: 10.1007/s00526-016-1027-2.![]() ![]() ![]() |
[7] |
K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045.![]() ![]() ![]() |
[8] |
K. Fujie and T. Senba, Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.
doi: 10.1088/0951-7715/29/8/2417.![]() ![]() ![]() |
[9] |
K. Fujie and T. Senba, Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 81-102.
doi: 10.3934/dcdsb.2016.21.81.![]() ![]() ![]() |
[10] |
K. Fujie, M. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224.
doi: 10.1002/mma.3149.![]() ![]() ![]() |
[11] |
T. Hillen and K. J. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
[12] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
![]() ![]() |
[13] |
S. Itô, Diffusion Equations, volume 114 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992.
![]() ![]() |
[14] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
[15] |
J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.
doi: 10.1002/mma.3489.![]() ![]() ![]() |
[16] |
J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 49, 33pp.
doi: 10.1007/s00030-017-0472-8.![]() ![]() ![]() |
[17] |
M. Mizukami and T. Yokota, A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity, Math. Nachr., 290 (2017), 2648-2660.
doi: 10.1002/mana.201600399.![]() ![]() ![]() |
[18] |
T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156.
![]() ![]() |
[19] |
G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 671-674.
doi: 10.1007/BF02460738.![]() ![]() ![]() |
[20] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[21] |
C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.
doi: 10.1016/j.nonrwa.2011.07.006.![]() ![]() ![]() |
[22] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019.![]() ![]() ![]() |
[23] |
Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differential Equations, 259 (2015), 6142-6161.
doi: 10.1016/j.jde.2015.07.019.![]() ![]() ![]() |
[24] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
[25] |
M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.
doi: 10.1002/mma.1346.![]() ![]() ![]() |
[26] |
M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.
doi: 10.1137/140979708.![]() ![]() ![]() |
[27] |
M. Winkler, The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26 (2016), 987-1024.
doi: 10.1142/S0218202516500238.![]() ![]() ![]() |