\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity

Abstract Full Text(HTML) Related Papers Cited by
  • We investigate the parabolic-elliptic Keller-Segel model

    $ \begin{align*} \left\{ \begin{array}{r@{\, }l@{\quad}l@{\quad}l@{\, }c} u_{t}& = \Delta u-\, \chi\nabla\!\cdot(\frac{u}{v}\nabla v), \ &x\in\Omega, & t>0, \\ 0& = \Delta v-\, v+u, \ &x\in\Omega, & t>0, \\ \frac{\partial u}{\partial\nu}& = \frac{\partial v}{\partial\nu} = 0, &x\in\partial \Omega, & t>0, \\ u(&x, 0) = u_0(x), \ &x\in\Omega, & \end{array}\right. \end{align*} $

    in a bounded domain $ \Omega\subset\mathbb{R}^n $ $ (n\geq2) $ with smooth boundary.

    We introduce a notion of generalized solvability which is consistent with the classical solution concept, and we show that whenever $ 0<\chi<\frac{n}{n-2} $ and the initial data satisfy only certain requirements on regularity and on positivity, one can find at least one global generalized solution.

    Mathematics Subject Classification: Primary: 35K55, 35D99; Secondary: 35A01, 35Q92, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.
    [2] P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347-359. 
    [3] T. Black, Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system in 2D, J. Differential Equations, 265 (2018), 2296–2339. doi: 10.1016/j.jde.2018.04.035.
    [4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.
    [5] H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.
    [6] X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differential Equations, 55 (2016), Art. 107, 39 pp. doi: 10.1007/s00526-016-1027-2.
    [7] K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.  doi: 10.1016/j.jmaa.2014.11.045.
    [8] K. Fujie and T. Senba, Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.  doi: 10.1088/0951-7715/29/8/2417.
    [9] K. Fujie and T. Senba, Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 81-102.  doi: 10.3934/dcdsb.2016.21.81.
    [10] K. FujieM. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224.  doi: 10.1002/mma.3149.
    [11] T. Hillen and K. J. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.
    [12] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. 
    [13] S. Itô, Diffusion Equations, volume 114 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1992.
    [14] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.
    [15] J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.  doi: 10.1002/mma.3489.
    [16] J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 49, 33pp. doi: 10.1007/s00030-017-0472-8.
    [17] M. Mizukami and T. Yokota, A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity, Math. Nachr., 290 (2017), 2648-2660.  doi: 10.1002/mana.201600399.
    [18] T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156. 
    [19] G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 671-674.  doi: 10.1007/BF02460738.
    [20] J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96. doi: 10.1007/BF01762360.
    [21] C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.  doi: 10.1016/j.nonrwa.2011.07.006.
    [22] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.
    [23] Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differential Equations, 259 (2015), 6142-6161.  doi: 10.1016/j.jde.2015.07.019.
    [24] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [25] M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.  doi: 10.1002/mma.1346.
    [26] M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.
    [27] M. Winkler, The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26 (2016), 987-1024.  doi: 10.1142/S0218202516500238.
  • 加载中
SHARE

Article Metrics

HTML views(1263) PDF downloads(341) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return