\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system

Abstract Full Text(HTML) Related Papers Cited by
  • We consider a parabolic-elliptic chemotaxis system generalizing

    $ \begin{align} & {{u}_{t}}=\nabla \cdot ({{(u+1)}^{m-1}}\nabla u)-\nabla \cdot (u{{(u+1)}^{\sigma -1}}\nabla v) \\ & \ 0=\Delta v-v+u \\ \end{align} $

    in bounded smooth domains $ \Omega \subset \mathbb{R}^N $, $ N\ge 3 $, and with homogeneous Neumann boundary conditions. We show that

    ● solutions are global and bounded if $ \sigma<m-\frac{N-2}{N} $

    ● solutions are global if $ \sigma\le 0 $

    ● close to given radially symmetric functions there are many initial data producing unbounded solutions if $ \sigma>m-\frac{N-2}{N} $.

    In particular, if $ \sigma\le 0 $ and $ \sigma>m-\frac{N-2}{N} $, there are many initial data evolving into solutions that blow up after infinite time.

    Mathematics Subject Classification: Primary: 92C17, 35Q92, 35A01, 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. 
    [2] V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl.(9), 86 (2006), 155-175.  doi: 10.1016/j.matpur.2006.04.002.
    [3] V. CalvezL. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations, 37 (2012), 561-584.  doi: 10.1080/03605302.2012.655824.
    [4] T. Cieślak and K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system, Proc. Amer. Math. Soc., 146 (2018), 2529-2540.  doi: 10.1090/proc/13939.
    [5] T. Cieślak and C. Morales-Rodrigo, Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions, Topol. Methods Nonlinear Anal., 29 (2007), 361-381. 
    [6] T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.  doi: 10.1016/j.jde.2012.01.045.
    [7] T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146.  doi: 10.1007/s10440-013-9832-5.
    [8] T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113.  doi: 10.1016/j.jde.2014.12.004.
    [9] T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.
    [10] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.
    [11] H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.
    [12] M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 24 (1997), 633-683. 
    [13] D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.
    [14] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.
    [15] S. IshidaT. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Math. Methods Appl. Sci., 36 (2013), 745-760.  doi: 10.1002/mma.2622.
    [16] S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.
    [17] S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.  doi: 10.1016/j.jde.2011.02.012.
    [18] S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.  doi: 10.3934/dcdsb.2013.18.2569.
    [19] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.
    [20] J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084.  doi: 10.1016/j.jde.2016.12.007.
    [21] X. Li and Z. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 3503-3531.  doi: 10.3934/dcds.2015.35.3503.
    [22] N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system, Preprint.
    [23] T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.  doi: 10.1155/S1025583401000042.
    [24] T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156. 
    [25] T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. 
    [26] T. NagaiT. Senba and K. Yoshida, Global existence of solutions to the parabolic systems of chemotaxis, Sūrikaisekikenkyūsho Kōkyūroku, 1009 (1997), 22-28. 
    [27] K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. 
    [28] T. Senba and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367.  doi: 10.4310/MAA.2001.v8.n2.a9.
    [29] Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential Integral Equations, 20 (2007), 133-180. 
    [30] Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.  doi: 10.1016/j.jde.2006.03.003.
    [31] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.
    [32] M. Tian and S. Zheng, Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species, Commun. Pure Appl. Anal., 15 (2016), 243-260.  doi: 10.3934/cpaa.2016.15.243.
    [33] L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.
    [34] Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259-292.  doi: 10.1016/j.jmaa.2016.03.061.
    [35] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [36] M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.  doi: 10.1002/mma.1146.
    [37] M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.
    [38] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl.(9), 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.
    [39] M. Winkler, Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities, Preprint.
    [40] M. Winkler, Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30 (2017), 735-764.  doi: 10.1088/1361-6544/aa565b.
    [41] M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.
    [42] J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.
    [43] P. ZhengC. Mu and X. Hu, Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 2299-2323.  doi: 10.3934/dcds.2015.35.2299.
  • 加载中
SHARE

Article Metrics

HTML views(1009) PDF downloads(320) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return