# American Institute of Mathematical Sciences

• Previous Article
Perturbations of Hindmarsh-Rose neuron dynamics by fractional operators: Bifurcation, firing and chaotic bursts
• DCDS-S Home
• This Issue
• Next Article
Multi-directional and saturated chaotic attractors with many scrolls for fractional dynamical systems
March  2020, 13(3): 645-662. doi: 10.3934/dcdss.2020035

## Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control

 1 Department of Mathematical Sciences, University of South Africa, Florida, 0003, South Africa 2 Institute for Groundwater Studies, University of the Free State, Bloemfontein, 9300, South Africa

* Corresponding author: franckemile2006@yahoo.ca

Received  June 2018 Revised  June 2018 Published  March 2019

Fund Project: This work was partially supported by the grant No: 105932 from the National Research Foundation (NRF) of South Africa.

Traveling waves remain significant in Applied Sciences mostly because they involve the movement of energy carrier particles. In this paper, traveling waves described by a generalized system, the fractional variable order hyperbolic Liouville model is solved numerically by means of Crank-Nicholson scheme. Detailed analysis are performed and prove that the numerical method is stable and converges. Simulations reveal that the model's variable order derivative (a function of time and position variables) has a considerable impact on the dynamics of the whole system. It influences the movement and the shape of the resulting waves including their amplitude, their wavelength as well as their compression and rarefaction processes. Such a variable order derivative becomes, due to these results, a substantial parameter and non-constant tool for the regulation and control of models describing wave motion.

Citation: Emile Franc Doungmo Goufo, Abdon Atangana. Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 645-662. doi: 10.3934/dcdss.2020035
##### References:
 [1] J. F. Aguilar, T. Cordova-Fraga, J. Trres-Jimnez, R. F. Escobar-Jimnez, V. H. Olivares-Peregrino and G. V. Guerrero-Ramrez, Nonlocal transport processes and the fractional cattaneo-vernotte equation, Mathematical Problems in Engineering, 2016 (2016), Art. ID 7845874, 15 pp. doi: 10.1155/2016/7845874. [2] A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015), 104-114.  doi: 10.1016/j.jcp.2014.12.043. [3] D. Baleanu, J. A. Tenreiro Machado and A. C. J. Luo, Fractional Dynamics and Control, Springer New York Dordrecht Heidelberg London, 2012. doi: 10.1007/978-1-4614-0457-6. [4] E. Bonyah, M. A. Khan, K. O. Okosun and S. Islam, A theoretical model for Zika virus transmission, PloS One, 12 (2017), e0185540. doi: 10.1371/journal.pone.0185540. [5] R. Bürger, Mathematical principles of mutationselection models, Genetica, 102/103 (1998), 279-298. [6] C. M. Chen, F. Liu, I. Turner and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), 886-897.  doi: 10.1016/j.jcp.2007.05.012. [7] A. Coronel-Escamilla, J. F. Gmez-Aguilar, L. Torres and R. F. Escobar-Jimnez, A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A: Statistical Mechanics and its Applications, 491 (2018), 406-424.  doi: 10.1016/j.physa.2017.09.014. [8] A. Coronel-Escamilla, J. F. Gmez-Aguilar, D. Baleanu, T. Crdova-Fraga, R. F. Escobar-Jimnez, V. H. Olivares-Peregrino and M. M. A. Qurashi, BatemanF eshbach Tikochinsky and CaldirolaKanai Oscillators with New Fractional Differentiation, Entropy, 19 (2017), p55. [9] A. Coronel-Escamilla, F. Torres, J. F. Gomez-Aguilar, R. F. Escobar-Jimenez and G. V. Guerrero-Ramrez, On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning, Multibody System Dynamics, 43 (2018), 257-277.  doi: 10.1007/s11044-017-9586-3. [10] A. Coronel-Escamilla, J.F. Gmez-Aguilar, D. Baleanu, T. Crdova-Fraga, R.F. Escobar-Jimnez, V.H. Olivares-Peregrino, and A. Abundez-Pliego, Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel, Advances in Difference Equations, 2016 (2016), Paper No. 283, 17 pp. doi: 10.1186/s13662-016-1001-5. [11] J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proc. Camb. Philol. Soc., 43 (1947), 50-67.  doi: 10.1017/S0305004100023197. [12] K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52.  doi: 10.1023/B:NUMA.0000027736.85078.be. [13] E. F. Doungmo Goufo, Speeding up chaos and limit cycles in evolutionary language and learning processes, Mathematical Methods in the Applied Sciences, 40 (2017), 3055-3065.  doi: 10.1002/mma.4220. [14] E. F. Doungmo Goufo and S. Kumar, Shallow water wave models with and without singular kernel: Existence, uniqueness and similarities, Mathematical Problems in Engineering, 2017 (2017), Article ID 4609834, 9 pages. doi: 10.1155/2017/4609834. [15] E. F. Doungmo Goufo and J. J. Nieto, Attractors for fractional differential problems of transition to turbulent flows, Journal of Computational and Applied Mathematics, 339 (2018), 329-342.  doi: 10.1016/j.cam.2017.08.026. [16] E. F. Doungmo Goufo, Solvability of chaotic fractional systems with 3D four-scroll attractors, Chaos, Solitons & Fractals, 104 (2017), 443-451.  doi: 10.1016/j.chaos.2017.08.038. [17] E. F. Doungmo Goufo, Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: Basic theory and applications, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26 (2016), 084305, 10 pp. doi: 10.1063/1.4958921. [18] R. Gorenflo and F. Mainardi, Fractional diffusion processes: Probability distribution and continuous time random walk, Lecture Notes Phys, 621 (2003), 148-166.  doi: 10.1007/3-540-44832-2_8. [19] E. Hanert, On the numerical solution of space time fractional diffusion models, Comput. Fluids, 46 (2011), 33-39.  doi: 10.1016/j.compfluid.2010.08.010. [20] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747. [21] J. Hofbauer and K. Sigmund, Evolutionary Games and Replicator Dynamics, Cambridge University Press, Cambridge, 1998.  doi: 10.1017/CBO9781139173179. [22] Y. Khan, K. Sayevand, M. Fardi and M. Ghasemi, A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equations, Applied Mathematics and Computation, 249 (2014), 229-236.  doi: 10.1016/j.amc.2014.10.070. [23] N. L. Komarova, Replicator-mutator equation, universality property and population dynamics of learning, Journal of Theoretical Biology, 230 (2004), 227-239.  doi: 10.1016/j.jtbi.2004.05.004. [24] N. L. Komarova, P. Niyogi and M. A. Nowak, Evolutionary dynamics of grammar acquisition, J. Theor. Biol., 209 (2001), 43-59.  doi: 10.1006/jtbi.2000.2240. [25] C. P. Li and C. X. Tao, On the fractional Adams method, Computers and Mathematics with Applications, 58 (2009), 1573-1588.  doi: 10.1016/j.camwa.2009.07.050. [26] R. Lin, F. Liu, V. Anh and I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435-445.  doi: 10.1016/j.amc.2009.02.047. [27] C. F. Lorenzo and T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57-98.  doi: 10.1023/A:1016586905654. [28] D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Eng. in Sys. Appl., 2 (1996), 963. [29] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection dispersion equations, J. Comput. Appl. Math., 172 (2004), 65-77.  doi: 10.1016/j.cam.2004.01.033. [30] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. [31] W. G. Mitchener and M. A. Nowak, Chaos and language, Proceedings of the Royal Society B: Biological Sciences, 271 (2004), 701. doi: 10.1098/rspb.2003.2643. [32] M. Nowak and K. Sigmund, Chaos and the evolution of cooperation, Proceedings of the National Academy of Sciences, 90 (1993), 5091-5094.  doi: 10.1073/pnas.90.11.5091. [33] D. Pais and N. E. Leonard, Limit cycles in replicator-mutator network dynamics, in 50th IEEE Conference on Decision and Control, 2011, 3922–3927. doi: 10.1109/CDC.2011.6160995. [34] I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen and B. M. Vinagre Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. Comput. Phys., 228 (2009), 3137-3153.  doi: 10.1016/j.jcp.2009.01.014. [35] I. Podlubny, Fractional Differential Equations, Academic Press, California, USA, 1999. [36] A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2004. [37] L. E. S. Ramirez and C. F. M. Coimbra, On the selection and meaning of variable order operators for dynamic modelling, Int. J. Differ. Equ., 2010 (2010), 846107, 16 pp. doi: 10.1155/2010/846107. [38] B. Ross and S. G. Samko, Fractional integration operator of a variable order in the Holder spaces $H_(x),$, Int. J. Math. Math. Sci., 18 (1995), 777-788.  doi: 10.1155/S0161171295001001. [39] Z. Shah, T. Gul, S. Islam, M. A. Khan, E. Bonyah, F. Hussain and M. Ullah, Three dimensional third grade nanofluid flow in a rotating system between parallel plates with Brownian motion and thermophoresis effects, Results in Physics, 10 (2018), 36-45.  doi: 10.1016/j.rinp.2018.05.020. [40] P. F. Stadler and P. Schuster, Mutation in autocatalytic reaction networks-an analysis based on perturbation theory, J. Math. Biol., 30 (1992), 597-631.  doi: 10.1007/BF00948894. [41] C. Tadjeran, M. M. Meerschaert and H. P. Scheffler, A second order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), 205-213.  doi: 10.1016/j.jcp.2005.08.008. [42] S. Umarov and S. Steinberg, Variable order differential equations and diffusion with changing modes, Z. Anal. Anwend., 28 (2009), 431-450.  doi: 10.4171/ZAA/1392. [43] L. Yang, F. Zhichao, L. Hong and H. Siriguleng, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243 (2014), 703-717.  doi: 10.1016/j.amc.2014.06.023. [44] K. Yosida, Fonctional Analysis, Sixth Edition, Springer- Verlag, 1980. [45] S. B. Yuste and L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), 1862-1874.  doi: 10.1137/030602666. [46] Y. Zhang, A finite difference method for fractional partial differential equation, Appl. Math. Comput., 215 (2009), 524-529.  doi: 10.1016/j.amc.2009.05.018. [47] P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), 1760-1781.  doi: 10.1137/080730597.

show all references

##### References:
 [1] J. F. Aguilar, T. Cordova-Fraga, J. Trres-Jimnez, R. F. Escobar-Jimnez, V. H. Olivares-Peregrino and G. V. Guerrero-Ramrez, Nonlocal transport processes and the fractional cattaneo-vernotte equation, Mathematical Problems in Engineering, 2016 (2016), Art. ID 7845874, 15 pp. doi: 10.1155/2016/7845874. [2] A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015), 104-114.  doi: 10.1016/j.jcp.2014.12.043. [3] D. Baleanu, J. A. Tenreiro Machado and A. C. J. Luo, Fractional Dynamics and Control, Springer New York Dordrecht Heidelberg London, 2012. doi: 10.1007/978-1-4614-0457-6. [4] E. Bonyah, M. A. Khan, K. O. Okosun and S. Islam, A theoretical model for Zika virus transmission, PloS One, 12 (2017), e0185540. doi: 10.1371/journal.pone.0185540. [5] R. Bürger, Mathematical principles of mutationselection models, Genetica, 102/103 (1998), 279-298. [6] C. M. Chen, F. Liu, I. Turner and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), 886-897.  doi: 10.1016/j.jcp.2007.05.012. [7] A. Coronel-Escamilla, J. F. Gmez-Aguilar, L. Torres and R. F. Escobar-Jimnez, A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A: Statistical Mechanics and its Applications, 491 (2018), 406-424.  doi: 10.1016/j.physa.2017.09.014. [8] A. Coronel-Escamilla, J. F. Gmez-Aguilar, D. Baleanu, T. Crdova-Fraga, R. F. Escobar-Jimnez, V. H. Olivares-Peregrino and M. M. A. Qurashi, BatemanF eshbach Tikochinsky and CaldirolaKanai Oscillators with New Fractional Differentiation, Entropy, 19 (2017), p55. [9] A. Coronel-Escamilla, F. Torres, J. F. Gomez-Aguilar, R. F. Escobar-Jimenez and G. V. Guerrero-Ramrez, On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning, Multibody System Dynamics, 43 (2018), 257-277.  doi: 10.1007/s11044-017-9586-3. [10] A. Coronel-Escamilla, J.F. Gmez-Aguilar, D. Baleanu, T. Crdova-Fraga, R.F. Escobar-Jimnez, V.H. Olivares-Peregrino, and A. Abundez-Pliego, Formulation of Euler-Lagrange and Hamilton equations involving fractional operators with regular kernel, Advances in Difference Equations, 2016 (2016), Paper No. 283, 17 pp. doi: 10.1186/s13662-016-1001-5. [11] J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proc. Camb. Philol. Soc., 43 (1947), 50-67.  doi: 10.1017/S0305004100023197. [12] K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52.  doi: 10.1023/B:NUMA.0000027736.85078.be. [13] E. F. Doungmo Goufo, Speeding up chaos and limit cycles in evolutionary language and learning processes, Mathematical Methods in the Applied Sciences, 40 (2017), 3055-3065.  doi: 10.1002/mma.4220. [14] E. F. Doungmo Goufo and S. Kumar, Shallow water wave models with and without singular kernel: Existence, uniqueness and similarities, Mathematical Problems in Engineering, 2017 (2017), Article ID 4609834, 9 pages. doi: 10.1155/2017/4609834. [15] E. F. Doungmo Goufo and J. J. Nieto, Attractors for fractional differential problems of transition to turbulent flows, Journal of Computational and Applied Mathematics, 339 (2018), 329-342.  doi: 10.1016/j.cam.2017.08.026. [16] E. F. Doungmo Goufo, Solvability of chaotic fractional systems with 3D four-scroll attractors, Chaos, Solitons & Fractals, 104 (2017), 443-451.  doi: 10.1016/j.chaos.2017.08.038. [17] E. F. Doungmo Goufo, Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: Basic theory and applications, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26 (2016), 084305, 10 pp. doi: 10.1063/1.4958921. [18] R. Gorenflo and F. Mainardi, Fractional diffusion processes: Probability distribution and continuous time random walk, Lecture Notes Phys, 621 (2003), 148-166.  doi: 10.1007/3-540-44832-2_8. [19] E. Hanert, On the numerical solution of space time fractional diffusion models, Comput. Fluids, 46 (2011), 33-39.  doi: 10.1016/j.compfluid.2010.08.010. [20] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747. [21] J. Hofbauer and K. Sigmund, Evolutionary Games and Replicator Dynamics, Cambridge University Press, Cambridge, 1998.  doi: 10.1017/CBO9781139173179. [22] Y. Khan, K. Sayevand, M. Fardi and M. Ghasemi, A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equations, Applied Mathematics and Computation, 249 (2014), 229-236.  doi: 10.1016/j.amc.2014.10.070. [23] N. L. Komarova, Replicator-mutator equation, universality property and population dynamics of learning, Journal of Theoretical Biology, 230 (2004), 227-239.  doi: 10.1016/j.jtbi.2004.05.004. [24] N. L. Komarova, P. Niyogi and M. A. Nowak, Evolutionary dynamics of grammar acquisition, J. Theor. Biol., 209 (2001), 43-59.  doi: 10.1006/jtbi.2000.2240. [25] C. P. Li and C. X. Tao, On the fractional Adams method, Computers and Mathematics with Applications, 58 (2009), 1573-1588.  doi: 10.1016/j.camwa.2009.07.050. [26] R. Lin, F. Liu, V. Anh and I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435-445.  doi: 10.1016/j.amc.2009.02.047. [27] C. F. Lorenzo and T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57-98.  doi: 10.1023/A:1016586905654. [28] D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Eng. in Sys. Appl., 2 (1996), 963. [29] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection dispersion equations, J. Comput. Appl. Math., 172 (2004), 65-77.  doi: 10.1016/j.cam.2004.01.033. [30] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. [31] W. G. Mitchener and M. A. Nowak, Chaos and language, Proceedings of the Royal Society B: Biological Sciences, 271 (2004), 701. doi: 10.1098/rspb.2003.2643. [32] M. Nowak and K. Sigmund, Chaos and the evolution of cooperation, Proceedings of the National Academy of Sciences, 90 (1993), 5091-5094.  doi: 10.1073/pnas.90.11.5091. [33] D. Pais and N. E. Leonard, Limit cycles in replicator-mutator network dynamics, in 50th IEEE Conference on Decision and Control, 2011, 3922–3927. doi: 10.1109/CDC.2011.6160995. [34] I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen and B. M. Vinagre Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. Comput. Phys., 228 (2009), 3137-3153.  doi: 10.1016/j.jcp.2009.01.014. [35] I. Podlubny, Fractional Differential Equations, Academic Press, California, USA, 1999. [36] A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2004. [37] L. E. S. Ramirez and C. F. M. Coimbra, On the selection and meaning of variable order operators for dynamic modelling, Int. J. Differ. Equ., 2010 (2010), 846107, 16 pp. doi: 10.1155/2010/846107. [38] B. Ross and S. G. Samko, Fractional integration operator of a variable order in the Holder spaces $H_(x),$, Int. J. Math. Math. Sci., 18 (1995), 777-788.  doi: 10.1155/S0161171295001001. [39] Z. Shah, T. Gul, S. Islam, M. A. Khan, E. Bonyah, F. Hussain and M. Ullah, Three dimensional third grade nanofluid flow in a rotating system between parallel plates with Brownian motion and thermophoresis effects, Results in Physics, 10 (2018), 36-45.  doi: 10.1016/j.rinp.2018.05.020. [40] P. F. Stadler and P. Schuster, Mutation in autocatalytic reaction networks-an analysis based on perturbation theory, J. Math. Biol., 30 (1992), 597-631.  doi: 10.1007/BF00948894. [41] C. Tadjeran, M. M. Meerschaert and H. P. Scheffler, A second order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), 205-213.  doi: 10.1016/j.jcp.2005.08.008. [42] S. Umarov and S. Steinberg, Variable order differential equations and diffusion with changing modes, Z. Anal. Anwend., 28 (2009), 431-450.  doi: 10.4171/ZAA/1392. [43] L. Yang, F. Zhichao, L. Hong and H. Siriguleng, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243 (2014), 703-717.  doi: 10.1016/j.amc.2014.06.023. [44] K. Yosida, Fonctional Analysis, Sixth Edition, Springer- Verlag, 1980. [45] S. B. Yuste and L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), 1862-1874.  doi: 10.1137/030602666. [46] Y. Zhang, A finite difference method for fractional partial differential equation, Appl. Math. Comput., 215 (2009), 524-529.  doi: 10.1016/j.amc.2009.05.018. [47] P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), 1760-1781.  doi: 10.1137/080730597.
An example of water wave showing particles (in red) being propagated, after each oscillation, from one location to another accros the water. Successive positions held by the same particle are marked by blue dots and appear to be rectilinear
An example of two-dimensional plot comparison between the analytical solution and analytical solution for the model (8) with $\sigma(x, t) = 2,$. The figures are performed in the variable position $x$ for some fixed time $t:$ $t_1 = 0, \ t_2 = 0.55, \ t_3 = 0.9.$
An example of plot illustrating the dependence of traveling waves on the VOD. It shows different shapes, movements and displacements for resulting traveling waves for the model (8)–(10). Traveling waves show amplitudes larger and wavelengths shorter in (a) and (b) compared to (c) and (d). The compression and rarefaction processes also change from one traveling wave to another as the VOD varies
 [1] Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735 [2] Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993 [3] Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837 [4] Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 [5] Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227 [6] Zhiting Xu. Traveling waves in an SEIR epidemic model with the variable total population. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3723-3742. doi: 10.3934/dcdsb.2016118 [7] Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609 [8] Krunal B. Kachhia, Abdon Atangana. Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2357-2371. doi: 10.3934/dcdss.2020172 [9] Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291 [10] Judith R. Miller, Huihui Zeng. Multidimensional stability of planar traveling waves for an integrodifference model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 741-751. doi: 10.3934/dcdsb.2013.18.741 [11] Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic and Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857 [12] Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925 [13] Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 [14] M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83 [15] Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763 [16] Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 [17] Junhao Wen, Peixuan Weng. Traveling wave solutions in a diffusive producer-scrounger model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 627-645. doi: 10.3934/dcdsb.2017030 [18] Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 [19] Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417 [20] Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

2020 Impact Factor: 2.425