• Previous Article
    Extension of triple Laplace transform for solving fractional differential equations
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative
March  2020, 13(3): 741-754. doi: 10.3934/dcdss.2020041

Comparative study of fractional Fokker-Planck equations with various fractional derivative operators

Department of Mathematical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand-388421, Gujarat, India

Received  June 2018 Revised  September 2018 Published  March 2019

This paper presents a comparative study of fractional Fokker-Planck equations with various fractional derivative operators such as Caputo fractional derivative, Atangana-Baleanu fractional derivative and conformable fractional derivative. The new iterative method has been successively applied for finding approximate analytical solutions of the fractional Fokker-Planck equations with various fractional derivative operators. This method gives an analytical solution in the form of a convergent series with easily computable components. The behavior of solutions and the effects of different values of fractional order are shown graphically for various fractional derivative operators. Some examples are given to show ability of the method for solving the fractional Fokker-Planck equations.

Citation: Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 741-754. doi: 10.3934/dcdss.2020041
References:
[1]

T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.  doi: 10.1016/j.cam.2014.10.016.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

D. Baleanu and A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Communications in Nonlinear Science and Numerical Simulation, 59 (2018), 444-462.  doi: 10.1016/j.cnsns.2017.12.003.  Google Scholar

[4]

S. Bhalekar and V. Daftardar-Gejji, Convergence of the new iterative method, International Journal of Differential Equations, 2011 (2011), ArticleID 989065, 10 pages. doi: 10.1155/2011/989065.  Google Scholar

[5]

M. Caputo, Elastic Dissipazione, ZaniChelli, Bologana, 1969. Google Scholar

[6]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.   Google Scholar

[7]

V. Daftardar- Gejji and H. Jafari, An iterative method for solving non linear functional equations, J. Math. Anal. Appl., 316 (2006), 753-763.  doi: 10.1016/j.jmaa.2005.05.009.  Google Scholar

[8]

R. S. Dubey, B. T. Alkhatani and A. Atangana, Analytic solution of Space-time fractional Fokker-Planck equation by homotopy perturbation sumudu transform method, Mathematical Problems in Engineering, 2015 (2015), Article ID 780929, 7 pages. doi: 10.1155/2015/780929.  Google Scholar

[9]

I. S. Jesus and J. A. T Machado, Fractional control of heat diffusion systems, Nonlinear Dynamics, 54 (2008), 263-282.  doi: 10.1007/s11071-007-9322-2.  Google Scholar

[10]

R. KhalilM. Al HoraniA. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[12]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Interoduction to Mathematical Models, World Scientific Publishing, 2010. doi: 10.1142/9781848163300.  Google Scholar

[13]

G. M. Mittag-Leffler, Sur la nouvelle der fonction Eα(x), C.R. Acad. Sci. Paris (Ser.Ⅱ), 137 (1903), 554-558.   Google Scholar

[14]

Z. Odibat and S. Momani, Numerical solution of Fokker Planck equation with space- and time-fractional derivatives, Physics Letters A, 369 (2007), 349-358.  doi: 10.1016/j.physleta.2007.05.002.  Google Scholar

[15] I. J. Podulbuny, Fractional Differential Equations, Academic Press, New York, 1999.   Google Scholar
[16]

A. Prakash and H. Kaur, Numerical solution for fractional model of Fokker-Planck equation by using q-HATM, Chaos, Solitons and Fractals, 105 (2017), 99-110.  doi: 10.1016/j.chaos.2017.10.003.  Google Scholar

[17]

L. Yan, Numerical solution of fractional Fokker-Planck equations using iterative Laplace transform method, Abstract and Applied Analysis, 2013 (2013), Article ID 465160, 7 pages. doi: 10.1155/2013/465160.  Google Scholar

show all references

References:
[1]

T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.  doi: 10.1016/j.cam.2014.10.016.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

D. Baleanu and A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Communications in Nonlinear Science and Numerical Simulation, 59 (2018), 444-462.  doi: 10.1016/j.cnsns.2017.12.003.  Google Scholar

[4]

S. Bhalekar and V. Daftardar-Gejji, Convergence of the new iterative method, International Journal of Differential Equations, 2011 (2011), ArticleID 989065, 10 pages. doi: 10.1155/2011/989065.  Google Scholar

[5]

M. Caputo, Elastic Dissipazione, ZaniChelli, Bologana, 1969. Google Scholar

[6]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.   Google Scholar

[7]

V. Daftardar- Gejji and H. Jafari, An iterative method for solving non linear functional equations, J. Math. Anal. Appl., 316 (2006), 753-763.  doi: 10.1016/j.jmaa.2005.05.009.  Google Scholar

[8]

R. S. Dubey, B. T. Alkhatani and A. Atangana, Analytic solution of Space-time fractional Fokker-Planck equation by homotopy perturbation sumudu transform method, Mathematical Problems in Engineering, 2015 (2015), Article ID 780929, 7 pages. doi: 10.1155/2015/780929.  Google Scholar

[9]

I. S. Jesus and J. A. T Machado, Fractional control of heat diffusion systems, Nonlinear Dynamics, 54 (2008), 263-282.  doi: 10.1007/s11071-007-9322-2.  Google Scholar

[10]

R. KhalilM. Al HoraniA. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[12]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Interoduction to Mathematical Models, World Scientific Publishing, 2010. doi: 10.1142/9781848163300.  Google Scholar

[13]

G. M. Mittag-Leffler, Sur la nouvelle der fonction Eα(x), C.R. Acad. Sci. Paris (Ser.Ⅱ), 137 (1903), 554-558.   Google Scholar

[14]

Z. Odibat and S. Momani, Numerical solution of Fokker Planck equation with space- and time-fractional derivatives, Physics Letters A, 369 (2007), 349-358.  doi: 10.1016/j.physleta.2007.05.002.  Google Scholar

[15] I. J. Podulbuny, Fractional Differential Equations, Academic Press, New York, 1999.   Google Scholar
[16]

A. Prakash and H. Kaur, Numerical solution for fractional model of Fokker-Planck equation by using q-HATM, Chaos, Solitons and Fractals, 105 (2017), 99-110.  doi: 10.1016/j.chaos.2017.10.003.  Google Scholar

[17]

L. Yan, Numerical solution of fractional Fokker-Planck equations using iterative Laplace transform method, Abstract and Applied Analysis, 2013 (2013), Article ID 465160, 7 pages. doi: 10.1155/2013/465160.  Google Scholar

Figure 1.  Behavior of $ u(x,t) $ corresponding to the values $ \alpha = 0.3 $, $ \alpha = 0.6 $ and $ \alpha = 0.9 $ for $ B(\alpha) = 1 $ and $ t = 5 $ from left to right
Figure 2.  Behavior of $ u(x,t) $ corresponding to the values $ \alpha = 0.5 $ for Caputo fractional derivative, Atangana-Baleanu fractional derivative and conformable fractional derivative from left to right
Figure 3.  Behavior of $u(x,t)$ corresponding to the values $\alpha = 0.3$, $\alpha = 0.6$ and $\alpha = 0.9$ for $B(\alpha) = 1$ and $t = 5$ from left to right
Figure 4.  Behavior of $u(x,t)$ corresponding to the values $\alpha = 0.3$, $\alpha = 0.6$ and $\alpha = 0.9$ for $B(\alpha) = 1$ and $t = 5$ from left to right
Figure 5.  Behavior of $u(x, t)$ corresponding to the values $(\alpha = 0.3, \beta = 0.8)$, $(\alpha = 0.7, \beta = 0.4)$ and $(\alpha = 0.9, \beta = 0.9)$ for $B(\alpha) = 1$ and $t = 5$ from left to right
Figure 6.  Behavior of $u(x, t)$ corresponding to the values $\alpha = 0.5, \beta = 0.5$ for Caputo fractional derivative, Atangana-Baleanu fractional derivative and conformable fractional derivative from left to right
Table 1.  Comparison of $u(x,t)$ with different fractional differential operators at different values of $\alpha$ when $x = 2,t = 3$
$\alpha$ Caputo derivative Atangana-Baleanu derivative conformable derivative
0.25 8.8128 6.6843 40.2414
0.5 11.9088 8.9088 20.9282
0.75 14.7781 12.6030 17.3163
1 17 17 17
$\alpha$ Caputo derivative Atangana-Baleanu derivative conformable derivative
0.25 8.8128 6.6843 40.2414
0.5 11.9088 8.9088 20.9282
0.75 14.7781 12.6030 17.3163
1 17 17 17
Table 2.  Comparison of $u(x,t)$ with different fractional differential operators at different values of $\alpha$ when $x = 2,t = 3$
$\alpha$ Caputo derivative Atangana-Baleanu derivative conformable derivative
0.25 17.6255 12.2796 80.4828
0.5 23.8176 15.8632 41.8564
0.75 29.5563 23.3458 34.6326
1 34 34 34
$\alpha$ Caputo derivative Atangana-Baleanu derivative conformable derivative
0.25 17.6255 12.2796 80.4828
0.5 23.8176 15.8632 41.8564
0.75 29.5563 23.3458 34.6326
1 34 34 34
Table 3.  Comparison of $u(x,t)$ with different fractional differential operators at different values of $\alpha$ when $x = 2,t = 3$
$\alpha,\beta$ Caputo derivative Atangana-Baleanu derivative conformable derivative
$\alpha=0.9,\beta=0.2$ 5.1777 5.0846 5.2498
$\alpha=0.7,\beta=0.4$ 6.7396 6.0633 7.5260
$\alpha=0.5,\beta=0.6$ 8.1927 6.5332 11.8531
$\alpha=1,\beta=1$ 14.5 14.5 14.5
$\alpha,\beta$ Caputo derivative Atangana-Baleanu derivative conformable derivative
$\alpha=0.9,\beta=0.2$ 5.1777 5.0846 5.2498
$\alpha=0.7,\beta=0.4$ 6.7396 6.0633 7.5260
$\alpha=0.5,\beta=0.6$ 8.1927 6.5332 11.8531
$\alpha=1,\beta=1$ 14.5 14.5 14.5
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[2]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[3]

Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173

[4]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435

[5]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[6]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[7]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[8]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[9]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013

[10]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021026

[11]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021

[12]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[13]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[14]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[15]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[16]

Martin Burger, Ina Humpert, Jan-Frederik Pietschmann. On Fokker-Planck equations with In- and Outflow of Mass. Kinetic & Related Models, 2020, 13 (2) : 249-277. doi: 10.3934/krm.2020009

[17]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[18]

Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021007

[19]

M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429

[20]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (346)
  • HTML views (611)
  • Cited by (1)

Other articles
by authors

[Back to Top]