-
Previous Article
Mathematical modeling approach to the fractional Bergman's model
- DCDS-S Home
- This Issue
-
Next Article
Analysis of the Fitzhugh Nagumo model with a new numerical scheme
Note on a $ k $-generalised fractional derivative
1. | The IIS University, Jaipur, Rajasthan-302020, India |
2. | Manipal University Jaipur, Rajasthan-303007, India |
In this paper, we introduce the $ k $-generalised fractional derivatives with three parameters which reduced to $ k $-fractional Hilfer derivatives and $ k $-Riemann-Liouville fractional derivative as an interesting special cases. Further, we have also introduced some presumably new fascinating results which include the image power function, Laplace transform and composition of $ k $-Riemann-Liouville fractional integral with generalized composite fractional derivative. The technique developed in this paper can be used in other situation as well.
References:
[1] |
R. Dıaz and E. Pariguan,
On hypergeometric functions and pochhammer k-symbol, Divulg. Mat, 15 (2007), 179-192.
|
[2] |
G. A. Dorrego and R. A. Cerutti,
The k-fractional hilfer derivative, International Journal of Mathematical Analysis, 7 (2013), 543-550.
doi: 10.12988/ijma.2013.13051. |
[3] |
R. Garra, R. Gorenflo, F. Polito and Ž Tomovski,
Hilfer–prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589.
doi: 10.1016/j.amc.2014.05.129. |
[4] |
R. Hilfer et al., Applications of Fractional Calculus in Physics, vol. 35, World Scientific, 2000.
doi: 10.1142/9789812817747. |
[5] |
O. S. Iyiola,
Solving k-fractional hilfer differential equations via combined fractional integral transform methods, British Journal of Mathematics & Computer Science, 4 (2014), 1427-1436.
doi: 10.9734/BJMCS/2014/9444. |
[6] |
C. G. Kokologiannaki,
Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sciences, 5 (2010), 653-660.
|
[7] |
M. Mansour,
Determining the k-generalized gamma function $\gamma$k (x) by functional equations, Int. J. Contemp. Math. Sciences, 4 (2009), 1037-1042.
|
[8] |
K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993. |
[9] |
G. Mridula, P. Manohar, L. Chanchalani and A. Subhash,
On generalized composite fractional derivative, Walailak Journal of Science and Technology (WJST), 11 (2014), 1069-1076.
|
[10] |
S. Mubeen and G. Habibullah,
k-fractional integrals and application, Int. J. Contemp. Math. Sci, 7 (2012), 89-94.
|
[11] |
S. Mubeen, A. Rehman and F. Shaheen,
Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 5 (2014), 371-379.
|
[12] |
L. G. Romero, L. L. Luque, G. A. Dorrego and R. A. Cerutti,
On the k-riemann-liouville fractional derivative, Int. J. Contemp. Math. Sci, 8 (2013), 41-51.
doi: 10.12988/ijcms.2013.13004. |
show all references
References:
[1] |
R. Dıaz and E. Pariguan,
On hypergeometric functions and pochhammer k-symbol, Divulg. Mat, 15 (2007), 179-192.
|
[2] |
G. A. Dorrego and R. A. Cerutti,
The k-fractional hilfer derivative, International Journal of Mathematical Analysis, 7 (2013), 543-550.
doi: 10.12988/ijma.2013.13051. |
[3] |
R. Garra, R. Gorenflo, F. Polito and Ž Tomovski,
Hilfer–prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589.
doi: 10.1016/j.amc.2014.05.129. |
[4] |
R. Hilfer et al., Applications of Fractional Calculus in Physics, vol. 35, World Scientific, 2000.
doi: 10.1142/9789812817747. |
[5] |
O. S. Iyiola,
Solving k-fractional hilfer differential equations via combined fractional integral transform methods, British Journal of Mathematics & Computer Science, 4 (2014), 1427-1436.
doi: 10.9734/BJMCS/2014/9444. |
[6] |
C. G. Kokologiannaki,
Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sciences, 5 (2010), 653-660.
|
[7] |
M. Mansour,
Determining the k-generalized gamma function $\gamma$k (x) by functional equations, Int. J. Contemp. Math. Sciences, 4 (2009), 1037-1042.
|
[8] |
K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993. |
[9] |
G. Mridula, P. Manohar, L. Chanchalani and A. Subhash,
On generalized composite fractional derivative, Walailak Journal of Science and Technology (WJST), 11 (2014), 1069-1076.
|
[10] |
S. Mubeen and G. Habibullah,
k-fractional integrals and application, Int. J. Contemp. Math. Sci, 7 (2012), 89-94.
|
[11] |
S. Mubeen, A. Rehman and F. Shaheen,
Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 5 (2014), 371-379.
|
[12] |
L. G. Romero, L. L. Luque, G. A. Dorrego and R. A. Cerutti,
On the k-riemann-liouville fractional derivative, Int. J. Contemp. Math. Sci, 8 (2013), 41-51.
doi: 10.12988/ijcms.2013.13004. |
[1] |
Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011 |
[2] |
Yu-Ming Chu, Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Humaira Kalsoom. More new results on integral inequalities for generalized $ \mathcal{K} $-fractional conformable Integral operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2119-2135. doi: 10.3934/dcdss.2021063 |
[3] |
Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086 |
[4] |
Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018 |
[5] |
Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Adrian Korban, Serap Şahinkaya, Deniz Ustun. Reversible $ G $-codes over the ring $ {\mathcal{F}}_{j,k} $ with applications to DNA codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021056 |
[6] |
Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056 |
[7] |
Adam Kanigowski, Federico Rodriguez Hertz, Kurt Vinhage. On the non-equivalence of the Bernoulli and $ K$ properties in dimension four. Journal of Modern Dynamics, 2018, 13: 221-250. doi: 10.3934/jmd.2018019 |
[8] |
Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation algorithm for spherical $ k $-means problem with penalty. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021067 |
[9] |
Xavier Gràcia, Xavier Rivas, Narciso Román-Roy. Erratum: Constraint algorithm for singular field theories in the $ k $-cosymplectic framework. Journal of Geometric Mechanics, 2021, 13 (2) : 273-275. doi: 10.3934/jgm.2021007 |
[10] |
Huaning Liu, Yixin Ren. On the pseudorandom properties of $ k $-ary Sidel'nikov sequences. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021038 |
[11] |
Min Li, Yishui Wang, Dachuan Xu, Dongmei Zhang. The approximation algorithm based on seeding method for functional $ k $-means problem†. Journal of Industrial and Management Optimization, 2022, 18 (1) : 411-426. doi: 10.3934/jimo.2020160 |
[12] |
Habibul Islam, Om Prakash, Ram Krishna Verma. New quantum codes from constacyclic codes over the ring $ R_{k,m} $. Advances in Mathematics of Communications, 2022, 16 (1) : 17-35. doi: 10.3934/amc.2020097 |
[13] |
David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037 |
[14] |
Huimin Zheng, Xuejun Guo, Hourong Qin. The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $. Electronic Research Archive, 2020, 28 (1) : 103-125. doi: 10.3934/era.2020007 |
[15] |
Fan Yuan, Dachuan Xu, Donglei Du, Min Li. An exact algorithm for stable instances of the $ k $-means problem with penalties in fixed-dimensional Euclidean space. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021122 |
[16] |
Augusto Visintin. $ \Gamma $-compactness and $ \Gamma $-stability of the flow of heat-conducting fluids. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2331-2343. doi: 10.3934/dcdss.2022066 |
[17] |
Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033 |
[18] |
Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. Upper bounds on the length function for covering codes with covering radius $ R $ and codimension $ tR+1 $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021074 |
[19] |
Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074 |
[20] |
Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]