• Previous Article
    European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme
  • DCDS-S Home
  • This Issue
  • Next Article
    Mittag-Leffler input stability of fractional differential equations and its applications
March  2020, 13(3): 881-888. doi: 10.3934/dcdss.2020051

Inclusion of fading memory to Banister model of changes in physical condition

1. 

Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia

2. 

Department of mathematics, AMITY School of Engineering and Technology, AMITY University Rajasthan, Jaipur -302022, India

3. 

Nature Science Department, Community College of Riyadh, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia

4. 

Department of Mathematics, Faculty of Science, Fayoum University, Fayoum, Egypt

* Corresponding author: Ravi Shanker Dubey

Received  May 2018 Revised  June 2018 Published  March 2019

Fund Project: The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No (RG-1438-086).

We introduced the fading memory effect to the model portraying the prediction in physical condition. The classical model is known as the Banister model. We presented the existence and uniqueness conditions of the exact solutions of this model using three different memory including the bad memory induces by the power law and the good memories induced by exponential decay law and the Mittag-Leffler law. We derived the exact solutions using the Laplace transform for the non-delay version.

Citation: Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051
References:
[1]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[2]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[3]

A. Atangana and B. Dumitru, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.   Google Scholar

[4]

A. Atangana and J. F. Gmez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166. Google Scholar

[5]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[6]

T. Busso, Variable dose-response relationship between exercise training and performance, Med Sci Sports Exerc, 35 1188–1195. Google Scholar

[7]

T. Calvert, E. Banister, M. Savage and T. Bach, A systems model of the effects of training on physical performance, IEEE Transac-tions on Systems, Man and Cybernetics SMC-6(2), (1976), 94–102. Google Scholar

[8]

S. Eassom, Critical reflections on olympic ideology, Ontario: The Centre for Olympic Studies, (1994), 120–123. Google Scholar

[9]

A. Finn, Running with the Kenyans. p. chapter 2. Mangan, J A (2014), Sport in Latin American Society: Past and Present, (2012), 93. Google Scholar

[10]

G. Fulton and A. Bairner, Sport, space and national identity in ireland: The GAA, croke park and rule 42, Policy, 11 (2007), 55-74.   Google Scholar

[11]

L. K. ErvinA. A. Tateishi and R. V. Haroldo, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017), 1-9.  doi: 10.3389/fphy.2017.00052.  Google Scholar

[12]

J. A. T. Machado and A. M. Lopes, On the mathematical modeling of soccer dynamics, Communications in Nonlinear Science and Numerical Simulation, 53 (2017), 142-153.  doi: 10.1016/j.cnsns.2017.04.024.  Google Scholar

[13]

R. H. MortonJ. R. Fitz-Clarke and E. W. Banister, Modeling human performance in running, J Appl Physiol, 69 (1990), 1171-1177.   Google Scholar

[14]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense, Fractals, 99 (2017), 171-179.  doi: 10.1016/j.chaos.2017.04.008.  Google Scholar

[15]

T. W. CalvertE. W. BanisterM. V. Savage and T. Bach, A systems model of the effects of training on physical performance, IEEE Transactions on Systems, Man, and Cybernetics, 6 (1976), 94-102.   Google Scholar

[16]

H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 13, 17 pp. doi: 10.1051/mmnp/2018002.  Google Scholar

show all references

References:
[1]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[2]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[3]

A. Atangana and B. Dumitru, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.   Google Scholar

[4]

A. Atangana and J. F. Gmez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166. Google Scholar

[5]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[6]

T. Busso, Variable dose-response relationship between exercise training and performance, Med Sci Sports Exerc, 35 1188–1195. Google Scholar

[7]

T. Calvert, E. Banister, M. Savage and T. Bach, A systems model of the effects of training on physical performance, IEEE Transac-tions on Systems, Man and Cybernetics SMC-6(2), (1976), 94–102. Google Scholar

[8]

S. Eassom, Critical reflections on olympic ideology, Ontario: The Centre for Olympic Studies, (1994), 120–123. Google Scholar

[9]

A. Finn, Running with the Kenyans. p. chapter 2. Mangan, J A (2014), Sport in Latin American Society: Past and Present, (2012), 93. Google Scholar

[10]

G. Fulton and A. Bairner, Sport, space and national identity in ireland: The GAA, croke park and rule 42, Policy, 11 (2007), 55-74.   Google Scholar

[11]

L. K. ErvinA. A. Tateishi and R. V. Haroldo, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017), 1-9.  doi: 10.3389/fphy.2017.00052.  Google Scholar

[12]

J. A. T. Machado and A. M. Lopes, On the mathematical modeling of soccer dynamics, Communications in Nonlinear Science and Numerical Simulation, 53 (2017), 142-153.  doi: 10.1016/j.cnsns.2017.04.024.  Google Scholar

[13]

R. H. MortonJ. R. Fitz-Clarke and E. W. Banister, Modeling human performance in running, J Appl Physiol, 69 (1990), 1171-1177.   Google Scholar

[14]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense, Fractals, 99 (2017), 171-179.  doi: 10.1016/j.chaos.2017.04.008.  Google Scholar

[15]

T. W. CalvertE. W. BanisterM. V. Savage and T. Bach, A systems model of the effects of training on physical performance, IEEE Transactions on Systems, Man, and Cybernetics, 6 (1976), 94-102.   Google Scholar

[16]

H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 13, 17 pp. doi: 10.1051/mmnp/2018002.  Google Scholar

[1]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[2]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[3]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[4]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[5]

Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080

[6]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[7]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[8]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[9]

Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038

[10]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[11]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[12]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[13]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[14]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[15]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[16]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[17]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[18]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[19]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[20]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (210)
  • HTML views (568)
  • Cited by (0)

[Back to Top]