-
Previous Article
Optical solitons to the fractional perturbed NLSE in nano-fibers
- DCDS-S Home
- This Issue
-
Next Article
European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme
Existence results of Hilfer integro-differential equations with fractional order
1. | Department of Mathematics, GTN Arts College, Dindigul - 624 004, Tamil Nadu, India |
2. | PG and Research Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore - 641 029, Tamil Nadu, India |
3. | Department of Mathematics, Sri Eshwar College of Engineering, Coimbatore - 641 202, Tamil Nadu, India |
4. | Department of Mathematics, Faculty of Education, Harran University, Sanliurfa, Turkey |
The paper is relevance with Hilfer derivative with fractional order which is generalized case of R-L and Caputo's sense. We ensured the solution using noncompact measure and M$ \ddot{\text{o}} $nch's fixed point technique. Illustrative examples are included for the applicability of presented technique.
References:
[1] |
R. P. Agarwal, B. Ahmad, A. Alsaedi and N. Shahzad,
Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions, Advance in Difference Equations, 74 (2012), 1-10.
doi: 10.1186/1687-1847-2012-74. |
[2] |
R. Almeida,
What is the best fractional derivative to fit data?, Applicable Analysis and Discrete Mathematics, 11 (2017), 358-368.
doi: 10.2298/AADM170428002A. |
[3] |
J. Banas and K. Goebel, Measure of Noncompactness in Banach Space, Lecture Notes in Pure and Applied Mathematics, Marcell Dekker, New York, 1980. |
[4] |
H. M. Baskonus, T. Mekkaoui, Z. Hammouch and H. Bulut,
Active Control of a Chaotic Fractional Order Economic System, Entropy, 17 (2015), 5771-5783.
doi: 10.3390/e17064255. |
[5] |
A. H. Bhrawy and M. A. Zaky,
Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations, Applied Mathematical Modelling, 40 (2016), 832-845.
doi: 10.1016/j.apm.2015.06.012. |
[6] |
C. Cattani and A. Ciancio,
On the fractal distribution of primes and prime-indexed primes by the binary image analysis, Physica A, 460 (2016), 222-229.
doi: 10.1016/j.physa.2016.05.013. |
[7] |
M. Dokuyucu, E. Celik, H. Bulut and H. M. Baskonus,
Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus, 133 (2018), 92.
doi: 10.1140/epjp/i2018-11950-y. |
[8] |
K. M. Furati, M. D. Kassim and N. Tatar,
Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers & Mathematics with Applications, 64 (2012), 1612-1626.
doi: 10.1016/j.camwa.2012.01.009. |
[9] |
R. Garra, R. Gorenflo, F. Polito and Z. Tomovski,
Hilfer-Prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589.
doi: 10.1016/j.amc.2014.05.129. |
[10] |
H. Gu and J. J. Trujillo,
Existence of mild solution for evolution equation with Hilfer fractional derivative, Applied Mathematics and Computation, 257 (2015), 344-354.
doi: 10.1016/j.amc.2014.10.083. |
[11] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
doi: 10.1142/9789812817747. |
[12] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. |
[13] |
V. Lakshmikantham and A. S. Vatsala,
Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 69 (2008), 2677-2682.
doi: 10.1016/j.na.2007.08.042. |
[14] |
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York, 1993. |
[15] |
H. M$\ddot{\text{o}}$nch,
Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980), 985-999.
doi: 10.1016/0362-546X(80)90010-3. |
[16] |
I. Podlubny, Fractional Differential Equations, vol., 198, Academic Press, an Diego, 1999.
![]() ![]() |
[17] |
C. Ravichandran and J. J. Trujillo, Controllability of impulsive fractional functional integro-diffrential equations in Banach spaces, Journal of Function Spaces and Applications, 2013 (2013), Art. ID 812501, 8 pp.
doi: 10.1155/2013/812501. |
[18] |
C. Ravichandran and D. Baleanu,
Existence results for fractional integro-differential evolution equations with infinite delay in Banach spaces, Advances in Difference Equations, 2013 (2013), 1-12.
doi: 10.1186/1687-1847-2013-215. |
[19] |
C. Ravichandran and D. Baleanu,
On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Advances in Difference Equations, 291 (2013), 1-13.
doi: 10.1186/1687-1847-2013-291. |
[20] |
C. Ravichandran, K. Jothimani, H. M. Baskonus and N. Valliammal,
New results on nondensely characterized integro-differential equations with fractional order, The European Physical Journal Plus, 133 (2018), 1-10.
|
[21] |
A. Saadatmandi,
Bernstein operational matrix of fractional derivatives and its applications, Applied Mathematical Modelling, 38 (2014), 1365-1372.
doi: 10.1016/j.apm.2013.08.007. |
[22] |
T. Sandev, R. Metzler and Z. Tomoveski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 255203, 21 pp.
doi: 10.1088/1751-8113/44/25/255203. |
[23] |
A. R. Seadawy,
Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part Ⅰ, Computers & Mathematics with Applications, 70 (2015), 345-352.
doi: 10.1016/j.camwa.2015.04.015. |
[24] |
X. B Shu and Q. Wang,
The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2, $, Computers & Mathematics with Applications, 64 (2012), 2100-2110.
doi: 10.1016/j.camwa.2012.04.006. |
[25] |
R. Subashini, K. Jothimani, S. Saranya and C. Ravichandran,
On the results of Hilfer fractional derivative with nonlocal conditions, International Journal of Pure and Applied Mathematics, 118 (2018), 277-289.
|
[26] |
J. A. Tenreiro Machado and M. Mata,
Pseudo Phase Plane and Fractional Calculus modeling of western global economic downturn, Communications in Nonlinear Science and Numerical Simulation, 22 (2015), 396-406.
doi: 10.1016/j.cnsns.2014.08.032. |
[27] |
J. A. Tenreiro Machado,
Fractional dynamics in the Rayleigh's piston, Communications in Nonlinear Science and Numerical Simulation, 31 (2016), 76-82.
|
[28] |
N. Valliammal, C. Ravichandran and J. H. Park,
On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions, Mathematical Methods in the Applied Sciences, 40 (2017), 5044-5055.
doi: 10.1002/mma.4369. |
[29] |
V. Vijayakumar, C. Ravichandran, R. Murugesu and J. J. Trujillo,
Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators, Applied Mathematics and Computation, 247 (2014), 152-161.
doi: 10.1016/j.amc.2014.08.080. |
[30] |
J. R. Wang and Y. Zhang,
Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Applied Mathematics and Computation, 266 (2015), 850-859.
doi: 10.1016/j.amc.2015.05.144. |
[31] |
M. Yang and Q. Wang,
Existence of mild solutions for a class of Hilfer fractional evolution equations With nonlocal conditions, Fractional Calculus and Applied Analysis, 20 (2017), 679-705.
doi: 10.1515/fca-2017-0036. |
[32] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
doi: 10.1142/9069. |
[33] |
Y. Zhou and F. Jiao,
Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Analysis: Real World Applications, 11 (2010), 4465-4475.
doi: 10.1016/j.nonrwa.2010.05.029. |
[34] |
Y. Zhou, L. Zhang and X. H. Shen,
Existence of mild solutions for fractional evolution equations, Journal of Integral Equations and Applications, 25 (2013), 557-585.
doi: 10.1216/JIE-2013-25-4-557. |
show all references
References:
[1] |
R. P. Agarwal, B. Ahmad, A. Alsaedi and N. Shahzad,
Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions, Advance in Difference Equations, 74 (2012), 1-10.
doi: 10.1186/1687-1847-2012-74. |
[2] |
R. Almeida,
What is the best fractional derivative to fit data?, Applicable Analysis and Discrete Mathematics, 11 (2017), 358-368.
doi: 10.2298/AADM170428002A. |
[3] |
J. Banas and K. Goebel, Measure of Noncompactness in Banach Space, Lecture Notes in Pure and Applied Mathematics, Marcell Dekker, New York, 1980. |
[4] |
H. M. Baskonus, T. Mekkaoui, Z. Hammouch and H. Bulut,
Active Control of a Chaotic Fractional Order Economic System, Entropy, 17 (2015), 5771-5783.
doi: 10.3390/e17064255. |
[5] |
A. H. Bhrawy and M. A. Zaky,
Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations, Applied Mathematical Modelling, 40 (2016), 832-845.
doi: 10.1016/j.apm.2015.06.012. |
[6] |
C. Cattani and A. Ciancio,
On the fractal distribution of primes and prime-indexed primes by the binary image analysis, Physica A, 460 (2016), 222-229.
doi: 10.1016/j.physa.2016.05.013. |
[7] |
M. Dokuyucu, E. Celik, H. Bulut and H. M. Baskonus,
Cancer treatment model with the Caputo-Fabrizio fractional derivative, The European Physical Journal Plus, 133 (2018), 92.
doi: 10.1140/epjp/i2018-11950-y. |
[8] |
K. M. Furati, M. D. Kassim and N. Tatar,
Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers & Mathematics with Applications, 64 (2012), 1612-1626.
doi: 10.1016/j.camwa.2012.01.009. |
[9] |
R. Garra, R. Gorenflo, F. Polito and Z. Tomovski,
Hilfer-Prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589.
doi: 10.1016/j.amc.2014.05.129. |
[10] |
H. Gu and J. J. Trujillo,
Existence of mild solution for evolution equation with Hilfer fractional derivative, Applied Mathematics and Computation, 257 (2015), 344-354.
doi: 10.1016/j.amc.2014.10.083. |
[11] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
doi: 10.1142/9789812817747. |
[12] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. |
[13] |
V. Lakshmikantham and A. S. Vatsala,
Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 69 (2008), 2677-2682.
doi: 10.1016/j.na.2007.08.042. |
[14] |
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York, 1993. |
[15] |
H. M$\ddot{\text{o}}$nch,
Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980), 985-999.
doi: 10.1016/0362-546X(80)90010-3. |
[16] |
I. Podlubny, Fractional Differential Equations, vol., 198, Academic Press, an Diego, 1999.
![]() ![]() |
[17] |
C. Ravichandran and J. J. Trujillo, Controllability of impulsive fractional functional integro-diffrential equations in Banach spaces, Journal of Function Spaces and Applications, 2013 (2013), Art. ID 812501, 8 pp.
doi: 10.1155/2013/812501. |
[18] |
C. Ravichandran and D. Baleanu,
Existence results for fractional integro-differential evolution equations with infinite delay in Banach spaces, Advances in Difference Equations, 2013 (2013), 1-12.
doi: 10.1186/1687-1847-2013-215. |
[19] |
C. Ravichandran and D. Baleanu,
On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Advances in Difference Equations, 291 (2013), 1-13.
doi: 10.1186/1687-1847-2013-291. |
[20] |
C. Ravichandran, K. Jothimani, H. M. Baskonus and N. Valliammal,
New results on nondensely characterized integro-differential equations with fractional order, The European Physical Journal Plus, 133 (2018), 1-10.
|
[21] |
A. Saadatmandi,
Bernstein operational matrix of fractional derivatives and its applications, Applied Mathematical Modelling, 38 (2014), 1365-1372.
doi: 10.1016/j.apm.2013.08.007. |
[22] |
T. Sandev, R. Metzler and Z. Tomoveski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 255203, 21 pp.
doi: 10.1088/1751-8113/44/25/255203. |
[23] |
A. R. Seadawy,
Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part Ⅰ, Computers & Mathematics with Applications, 70 (2015), 345-352.
doi: 10.1016/j.camwa.2015.04.015. |
[24] |
X. B Shu and Q. Wang,
The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2, $, Computers & Mathematics with Applications, 64 (2012), 2100-2110.
doi: 10.1016/j.camwa.2012.04.006. |
[25] |
R. Subashini, K. Jothimani, S. Saranya and C. Ravichandran,
On the results of Hilfer fractional derivative with nonlocal conditions, International Journal of Pure and Applied Mathematics, 118 (2018), 277-289.
|
[26] |
J. A. Tenreiro Machado and M. Mata,
Pseudo Phase Plane and Fractional Calculus modeling of western global economic downturn, Communications in Nonlinear Science and Numerical Simulation, 22 (2015), 396-406.
doi: 10.1016/j.cnsns.2014.08.032. |
[27] |
J. A. Tenreiro Machado,
Fractional dynamics in the Rayleigh's piston, Communications in Nonlinear Science and Numerical Simulation, 31 (2016), 76-82.
|
[28] |
N. Valliammal, C. Ravichandran and J. H. Park,
On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions, Mathematical Methods in the Applied Sciences, 40 (2017), 5044-5055.
doi: 10.1002/mma.4369. |
[29] |
V. Vijayakumar, C. Ravichandran, R. Murugesu and J. J. Trujillo,
Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators, Applied Mathematics and Computation, 247 (2014), 152-161.
doi: 10.1016/j.amc.2014.08.080. |
[30] |
J. R. Wang and Y. Zhang,
Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Applied Mathematics and Computation, 266 (2015), 850-859.
doi: 10.1016/j.amc.2015.05.144. |
[31] |
M. Yang and Q. Wang,
Existence of mild solutions for a class of Hilfer fractional evolution equations With nonlocal conditions, Fractional Calculus and Applied Analysis, 20 (2017), 679-705.
doi: 10.1515/fca-2017-0036. |
[32] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
doi: 10.1142/9069. |
[33] |
Y. Zhou and F. Jiao,
Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Analysis: Real World Applications, 11 (2010), 4465-4475.
doi: 10.1016/j.nonrwa.2010.05.029. |
[34] |
Y. Zhou, L. Zhang and X. H. Shen,
Existence of mild solutions for fractional evolution equations, Journal of Integral Equations and Applications, 25 (2013), 557-585.
doi: 10.1216/JIE-2013-25-4-557. |
[1] |
David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037 |
[2] |
Tianliang Yang, J. M. McDonough. Solution filtering technique for solving Burgers' equation. Conference Publications, 2003, 2003 (Special) : 951-959. doi: 10.3934/proc.2003.2003.951 |
[3] |
Md. Abul Kalam Azad, Edite M.G.P. Fernandes. A modified differential evolution based solution technique for economic dispatch problems. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1017-1038. doi: 10.3934/jimo.2012.8.1017 |
[4] |
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039 |
[5] |
Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021210 |
[6] |
Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004 |
[7] |
Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations and Control Theory, 2021, 10 (4) : 733-748. doi: 10.3934/eect.2020089 |
[8] |
Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems and Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25 |
[9] |
Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055 |
[10] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[11] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022045 |
[12] |
Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895 |
[13] |
Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022 |
[14] |
Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104 |
[15] |
Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042 |
[16] |
Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1 |
[17] |
William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020 |
[18] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[19] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[20] |
Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]