We consider the regional enlarged observability problem for fractional evolution differential equations involving Caputo derivatives. Using the Hilbert Uniqueness Method, we show that it is possible to rebuild the initial state between two prescribed functions only in an internal subregion of the whole domain. Finally, an example is provided to illustrate the theory.
Citation: |
[1] |
S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27, Springer, New York, 2012.
doi: 10.1007/978-1-4614-4036-9.![]() ![]() ![]() |
[2] |
R. Almeida, S. Pooseh and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations, Imperial College Press, London, 2015.
doi: 10.1142/p991.![]() ![]() ![]() |
[3] |
M. Amouroux, A. El Jaȉ and E. Zerrik, Regional observability of distributed systems, Internat. J. Systems Sci., 25 (1994), 301-313.
doi: 10.1080/00207729408928961.![]() ![]() ![]() |
[4] |
M. Axtell and M. E. Bise, Fractional calculus applications in control systems, IEEE Conference on Aerospace and Electronics, 2 (1990), 563-566.
doi: 10.1109/NAECON.1990.112826.![]() ![]() |
[5] |
D. Baleanu, A. K. Golmankhaneh and A. K. Golmankhaneh, On electromagnetic field in fractional space, Nonlinear Anal. Real World Appl., 11 (2010), 288-292.
doi: 10.1016/j.nonrwa.2008.10.058.![]() ![]() ![]() |
[6] |
A. Carpinteri and F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer Verlag, 378 (1997), 291-348.
doi: 10.1007/978-3-7091-2664-6_7.![]() ![]() ![]() |
[7] |
R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6.![]() ![]() ![]() |
[8] |
A. Debbouche and D. F. M. Torres, Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions, Fract. Calc. Appl. Anal., 18 (2015), 95-121.
doi: 10.1515/fca-2015-0007.![]() ![]() ![]() |
[9] |
K. Diethelm and A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity, in: Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer Verlag, Heidelberg, (1999), 217–224.
![]() |
[10] |
S. Dolecki and D. L. Russell,, A general theory of observation and control, SIAM J. Control Optimization, 15 (1977), 185-220.
doi: 10.1137/0315015.![]() ![]() ![]() |
[11] |
A. Dzieliński and D. Sierociuk, Ultracapacitor modelling and control using discrete fractional order state-space model, Acta Montan. Slovaca, 13 (2008), 136-145.
![]() |
[12] |
A. Dzieliński and D. Sierociuk, Fractional order model of beam heating process and its experimental verification, in New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, (2010), 287–294.
doi: 10.1007/978-90-481-3293-5_24.![]() ![]() ![]() |
[13] |
A. Dzieliński, D. Sierociuk and G. Sarwas, Some applications of fractional order calculus, Bull. Polish Acad. Sci. Tech. Sci., 58 (2010), 583-592.
![]() |
[14] |
A. El Jaȉ and A. J. Pritchard, Capteurs et Actionneurs Dans L'analyse des Systémes Distribués, Recherches en Mathématiques Appliquées, 3, Masson, Paris, 1986.
![]() ![]() |
[15] |
A. El Jaȉ, M. C. Simon and E. Zerrik, Regional observability and sensors structures, Sensors and Actuators Journal, 39 (1993), 95-102.
![]() |
[16] |
F. Ge, Y. Chen and C. Kou, On the regional gradient observability of time fractional diffusion processes, Automatica J. IFAC, 74 (2016), 1-9.
doi: 10.1016/j.automatica.2016.07.023.![]() ![]() ![]() |
[17] |
F. Ge, Y. Q. Chen and C. Kou, Regional Analysis of Time-Fractional Diffusion Processes, Springer, Cham, 2018.
doi: 10.1007/978-3-319-72896-4.![]() ![]() ![]() |
[18] |
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014.
doi: 10.1007/978-3-662-43930-2.![]() ![]() ![]() |
[19] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812817747.![]() ![]() ![]() |
[20] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
![]() ![]() |
[21] |
M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, Czestochowa University of Technology, Czestochowa, 2009.
![]() |
[22] |
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 2, Recherches en Mathématiques Appliquées, 9, Masson, Paris, 1988.
![]() ![]() |
[23] |
J.-L. Lions, Sur la contrôlabilité exacte élargie, in Partial differential equations and the calculus of variations, Vol. II, 703–727, Progr. Nonlinear Differential Equations Appl., 2, Birkhäuser Boston, Boston, MA, (1989).
![]() ![]() |
[24] |
R. L. Magin, Fractional Calculus in Bioengineering, Begell House Inc., 2006.
![]() |
[25] |
F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, arXiv: 0704.0320 (2007).
![]() |
[26] |
D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J. Math., 26 (2010), 210-221.
![]() ![]() |
[27] |
A. Oustaloup, From fractality to non integer derivation: A fundamental idea for a new process control strategy, In: Bensoussan A., Lions J.L. (eds) Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences, 111, Springer, Berlin, Heidelberg, (1988), 53–64.
![]() |
[28] |
I. Podlubny, Fractional Differential Equations,
Mathematics in Science and Engineering, ![]() ![]() |
[29] |
A. J. Pritchard and A. Wirth, Unbounded control and observation systems and their duality, SIAM J. Control Optim., 16 (1978), 535-545.
doi: 10.1137/0316036.![]() ![]() ![]() |
[30] |
D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.
doi: 10.2307/2000351.![]() ![]() ![]() |
[31] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.
![]() ![]() |
[32] |
J. A. Tenreiro Machado, F. Mainardi, V. Kiryakova and T. Atanacković, Fractional calculus: D'où venons-nous Que sommes-nous? Où allons-nous, Fract. Calc. Appl. Anal., 19 (2016), 1074-1104.
doi: 10.1515/fca-2016-0059.![]() ![]() ![]() |
[33] |
G. Weiss, Admissible observation operators for linear semigroups, Israel J. Math., 65 (1989), 17-43.
doi: 10.1007/BF02788172.![]() ![]() ![]() |
[34] |
E. H. Zerrik and and H. Bourray, Gradient observability for diffusion systems, Int. J. Appl. Math. Comput. Sci., 13 (2003), 139-150.
![]() ![]() |
[35] |
Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.
doi: 10.1016/j.camwa.2009.06.026.![]() ![]() ![]() |