We answer here a question posed by F. Diacu in 2012 that asked whether there exist relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ that move in a plane non-perpendicular to the rotation axis. For 3-body non-geodesic ordinary central configurations on $ \mathbb S^2 $ and $ \mathbb H^2 $, we find all relative equilibria that move in a plane perpendicular to the rotation axis. We also show that the set of shapes of 3-body non-geodesic ordinary central configurations on $ \mathbb S^2 $ and $ \mathbb H^2 $ is a 3-dimensional manifold. Then we conclude that almost all 3-body relative equilibria move in planes non-perpendicular to the rotation axis.
Citation: |
[1] |
F. Diacu, On the singularities of the curved $n$-body problem, Trans. Amer. Math. Soc., 363 (2011), 2249-2264.
doi: 10.1090/S0002-9947-2010-05251-1.![]() ![]() ![]() |
[2] |
F. Diacu, Polygonal homographic orbits of the curved $n$-body problem, Trans. Amer. Math. Soc., 364 (2012), 2783-2802.
doi: 10.1090/S0002-9947-2011-05558-3.![]() ![]() ![]() |
[3] |
F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Studies in Dynamical Systems, Atlantis Press, Paris, 2012.
doi: 10.2991/978-94-91216-68-8.![]() ![]() ![]() |
[4] |
F. Diacu, Relative equilibria in the 3-dimensional curved $n$-body problem, Mem. Amer. Math. Soc., 228 (2014), ⅵ+80 pp.
![]() ![]() |
[5] |
F. Diacu, Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem, J. Math. Phys., 57 (2016), 112701, 20pp.
doi: 10.1063/1.4967443.![]() ![]() ![]() |
[6] |
F. Diacu, The classical N-body problem in the context of curved space, Canad. J. Math., 69 (2017), 790-806.
doi: 10.4153/CJM-2016-041-2.![]() ![]() ![]() |
[7] |
F. Diacu and S. Kordlou, Rotopulsators of the curved $N$-body problem, J. Differential Equations, 255 (2013), 2709-2750.
doi: 10.1016/j.jde.2013.07.009.![]() ![]() ![]() |
[8] |
F. Diacu, R. Martínez, E. Pérez-Chavela and C. Simó, On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Phys. D, 256/257 (2013), 21-35.
doi: 10.1016/j.physd.2013.04.007.![]() ![]() ![]() |
[9] |
F. Diacu and E. Pérez-Chavela, Homographic solutions of the curved 3-body problem, J. Differential Equations, 250 (2011), 340-366.
doi: 10.1016/j.jde.2010.08.011.![]() ![]() ![]() |
[10] |
F. Diacu and S. Popa, All the Lagrangian relative equilibria of the curved 3-body problem have equal masses, J. Math. Phys., 55 (2014), 112701, 9pp.
doi: 10.1063/1.4900833.![]() ![]() ![]() |
[11] |
F. Diacu, J. M. Sánchez-Cerritos and S. Zhu, Stability of fixed Points and associated relative equilibria of the 3-body problem on $ {\Bbb {S}}^1 $ and $ {\Bbb {S}}^2 $, J. Dynam. Differential Equations, 30 (2018), 209-225.
doi: 10.1007/s10884-016-9550-6.![]() ![]() ![]() |
[12] |
F. Diacu, C. Stoica and S. Zhu, Central configurations of the curved N-body problem, J. Nonlinear Sci., 28 (2018), 1999–2046, arXiv: 1603.03342.
doi: 10.1007/s00332-018-9473-y.![]() ![]() ![]() |
[13] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976.
![]() ![]() |
[14] |
A. A. Kilin, Libration points in spaces S2 and L2, Regul. Chaotic Dyn., 4 (1999), 91-103.
doi: 10.1070/rd1999v004n01ABEH000101.![]() ![]() ![]() |
[15] |
V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.
doi: 10.1007/BF00049149.![]() ![]() ![]() |
[16] |
J. Llibre, R. Moeckel and C. Simó, Central Configurations, Periodic Orbits, and Hamiltonian Systems, Advanced Courses in Mathematics. CRM Barcelona, Lecture notes given at the Centre de Recerca Matemàtica (CRM), Barcelona, January 27–31, 2014, Edited by Montserrat Corbera, Josep Maria Cors and Enrique Ponce, Birkhäuser Springer, Basel, 2015.
doi: 10.1007/978-3-0348-0933-7.![]() ![]() ![]() |
[17] |
D. G. Saari, On the role and the properties of n-body central configurations, Celestial Mech., 21 (1980), 9-20.
doi: 10.1007/BF01230241.![]() ![]() ![]() |
[18] |
E. Schrödinger, A method for determining quantum-mechanical eigenvalues and eigenfunctions, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 46 (1940), 9-16.
![]() |
[19] |
A. V. Shchepetilov, Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A, 39 (2006), 5787-5806.
![]() ![]() |
[20] |
A. V. Shchepetilov, Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces, Lecture Notes in Physics, Springer, Berlin, 2006.
![]() ![]() |
[21] |
S. Smale, Topology and mechanics. Ⅱ. The planar n-body problem, Invent. Math., 11 (1970), 45-64.
doi: 10.1007/BF01389805.![]() ![]() ![]() |
[22] |
S. Smale, Problems on the nature of relative equilibria in celestial mechanics, in Manifolds –Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, (1971), 194–198.
![]() ![]() |
[23] |
A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, ⅴ. 5, Princeton University Press, Princeton, N. J., 1941.
![]() ![]() |
[24] |
S. Zhu, Eulerian relative equilibria of the curved 3-body problems in S2, Proc. Amer. Math. Soc., 142 (2014), 2837-2848.
doi: 10.1090/S0002-9939-2014-11995-2.![]() ![]() ![]() |
[25] |
S. Zhu and S. Zhao, Three-dimensional central configurations in $ {\Bbb {H}}^3 $ and $ {\Bbb {S}}^3 $, J. Math. Phys., 58 (2017), 022901, 7pp.
doi: 10.1063/1.4975214.![]() ![]() ![]() |
[26] |
S. Zhu, A lower bound for the number of central configurations on $ {\mathbb {H}}^2 $, preprint, arXiv: 1702.05535.
![]() |
[27] |
S. Zhu, On Dziobek special central configurations, preprint, arXiv: 1705.03987.
![]() |
Lagrangian central configurations on
An
The projection of one shape