
-
Previous Article
Self-organized clusters in diffusive run-and-tumble processes
- DCDS-S Home
- This Issue
-
Next Article
Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined
Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay
Institut für Mathematik, Freie Universität Berlin, Arnimallee 3-7, 14195 Berlin, Germany |
$ \dot{x} (t) = \lambda f(x(t-1)) + b^{-1} (x(t) + x(t -p/2)) $ |
$ f $ |
$ \lambda, \, b $ |
$ 1, \ p/2 $ |
$ x \equiv 0 $ |
$ b = \infty $ |
$ f' (0) = 1 $ |
$ p_k = 2\pi/\omega_k $ |
$ i\omega_k = i(k+\tfrac{1}{2})\pi $ |
$ \lambda_k = (-1)^{k+1}\omega_k $ |
$ k $ |
$ k $ |
$ k $ |
$ k $ |
$ \mathcal{P} $ |
$ b < 0 $ |
$ p $ |
$ p_k $ |
$ k $ |
$ p_k $ |
$ b\neq 0 $ |
$ b $ |
$ k $ |
$ \mathcal{P} = (\underline{b}_k, \overline{b}_k) $ |
$ b \neq 0 $ |
$ k $ |
$ \mathcal{P} $ |
$ k $ |
$ b^{-1} (x(t-\vartheta) + x(t-\vartheta -p/2)) $ |
$ \vartheta $ |
References:
[1] |
R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.
![]() ![]() |
[2] |
O. Diekmann, S. A. van Gils, S. M. Verduyn-Lunel and H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, App. Math. Sci. 110, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[3] |
P. Dormayer,
Smooth bifurcation of symmetric periodic solutions of functional differential equations, J. Differ. Equations., 82 (1989), 109-155.
doi: 10.1016/0022-0396(89)90170-8. |
[4] |
B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Refuting the odd number limitation of time-delayed feedback control, Phys. Rev. Lett. 98 (2007), 114101.
doi: 10.1103/PhysRevLett.98.114101. |
[5] |
B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Beyond the odd-number limitation of time-delayed feedback control, In Handbook of Chaos Control, (E. Schöll et al., eds.), Wiley-VCH, Weinheim, (2008), 73–84. |
[6] |
B. Fiedler, V. Flunkert, P. Hövel and E. Schöll,
Delay stabilization of periodic orbits in coupled oscillator systems, Phil. Trans. Roy. Soc. A., 368 (2010), 319-341.
doi: 10.1098/rsta.2009.0232. |
[7] |
B. Fiedler and J. Mallet-Paret,
Connections between Morse sets for delay differential equations, J. Reine Angew. Math., 397 (1989), 23-41.
|
[8] |
B. Fiedler and S. Oliva,
Delayed feedback control of a delay equation at Hopf bifurcation, J. Dyn. Differ. Equations, 28 (2016), 1357-1391.
doi: 10.1007/s10884-015-9456-8. |
[9] |
J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. |
[10] |
J. K. Hale and S. M. Verduyn-Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[11] |
F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, In Handbook of Differential Equations: Ordinary Differential Equations, Vol. III. (A. Cañada, P. Drbek and A. Fonda eds.), Elsevier/North-Holland, Amsterdam, (2006), 435–545.
doi: 10.1016/S1874-5725(06)80009-X. |
[12] |
W. Just, B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Beyond the odd number limitation: A bifurcation analysis of time-delayed feedback control, Phys. Rev. E., 76 (2007), 026210, 11pp.
doi: 10.1103/PhysRevE.76.026210. |
[13] |
J. L. Kaplan and J. A. Yorke,
Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Analysis Appl., 48 (1974), 317-324.
doi: 10.1016/0022-247X(74)90162-0. |
[14] |
V. Kolmanovski and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer, Dordrecht, 1999.
doi: 10.1007/978-94-017-1965-0. |
[15] |
T. Krisztin,
Global dynamics of delay differential equations, Period. Math. Hung., 56 (2008), 83-95.
doi: 10.1007/s10998-008-5083-x. |
[16] |
J. Kurzweil, Small delays don't matter, In Proc. Symp. Differential Equations and Dynamical Systems, Warwick 1969 (D. Chillingworth ed.), Springer-Verlag Berlin, 1971, 47–49. |
[17] |
A. López Nieto, Heteroclinic connections in delay equations, Master's Thesis, Freie Universität Berlin, 2017. |
[18] |
J. Mallet-Paret,
Morse decompositions for differential delay equations, J. Differ. Equations, 72 (1988), 270-315.
doi: 10.1016/0022-0396(88)90157-X. |
[19] |
J. Mallet-Paret and R. D. Nussbaum,
Boundary layer phenomena for differential-delay equations with state-dependent time-lags: Ⅰ, Arch. Ration. Mech. Analysis, 120 (1992), 99-146.
doi: 10.1007/BF00418497. |
[20] |
J. Mallet-Paret and R. D. Nussbaum,
Boundary layer phenomena for differential-delay equations with state-dependent time-lags: Ⅱ, J. Reine Angew. Math., 477 (1996), 129-197.
doi: 10.1515/crll.1996.477.129. |
[21] |
J. Mallet-Paret and R. D. Nussbaum,
Boundary layer phenomena for differential-delay equations with state-dependent time-lags: Ⅲ, J. Differ. Equations, 189 (2003), 640-692.
doi: 10.1016/S0022-0396(02)00088-8. |
[22] |
J. Mallet-Paret and R. D. Nussbaum,
Stability of periodic solutions of state-dependent delay-differential equations, J. Differ. Equations, 250 (2011), 4085-4103.
doi: 10.1016/j.jde.2010.10.023. |
[23] |
J. Mallet-Paret and G. Sell,
Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions, J. Differ. Equations, 125 (1996), 385-440.
doi: 10.1006/jdeq.1996.0036. |
[24] |
J. Mallet-Paret and G. Sell,
The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differ. Equations, 125 (1996), 441-489.
doi: 10.1006/jdeq.1996.0037. |
[25] |
A. D. Myshkis, General theory of differential equations with retarded argument, AMS Translations, Ser. I, vol. 4. AMS, Providence (1962), Translated from Uspekhi Mat. Nauk (N.S.), 4 (1949), 99-141. |
[26] |
H. Nakajima,
On analytical properties of delayed feedback control of chaos, Phys. Lett. A., 232 (1997), 207-210.
doi: 10.1016/S0375-9601(97)00362-9. |
[27] |
H. Nakajima and Y. Ueda,
Half-period delayed feedback control for dynamical systems with symmetries, Phys. Rev. E., 58 (1998), 1757-1763.
doi: 10.1103/PhysRevE.58.1757. |
[28] |
R. G. Nussbaum, Differential-Delay Equations with Two Time Lags, Mem. Am. Math. Soc., 205, Providence, RI, 1978.
doi: 10.1090/memo/0205. |
[29] |
R. G. Nussbaum, Functional differential equations, In Handbook of Dynamical Systems, Vol. Ⅱ. (B. Fiedler ed.), Elsevier/North-Holland, Amsterdam, (2002), 461–499.
doi: 10.1016/S1874-575X(02)80031-5. |
[30] |
K. Pyragas,
Continuous control of chaos by self-controlling feedback, Theoretical and Practical Methods in Non-linear Dynamics, (1996), 118-123.
doi: 10.1016/B978-012396840-1/50038-2. |
[31] |
K. Pyragas, A twenty-year review of time-delay feedback control and recent developments, Int. Symp. Nonl. Th. Appl., Palma de Mallorca, 1 (2014), 683–686.
doi: 10.15248/proc.1.683. |
[32] |
H. -O. Walther,
Bifurcation from periodic solutions in functional differential equations, Math. Z., 182 (1983), 269-289.
doi: 10.1007/BF01175630. |
[33] |
H.-O. Walther, The 2-dimensional attractor of $\dot{x}(t) = -\mu x(t) + f(x(t-1))$, Mem. Amer. Math. Soc., 113 (1995), vi+76 pp.
doi: 10.1090/memo/0544. |
[34] |
H. -O. Walther,
Topics in delay differential equations, Jahresber. DMV, 116 (2014), 87-114.
doi: 10.1365/s13291-014-0086-6. |
[35] |
E. M. Wright,
On a non-linear differential-difference equation, J. Reine Angew. Math., 194 (1955), 66-87.
doi: 10.1515/crll.1955.194.66. |
[36] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[37] |
J. Yu and Z. Guo,
A survey on the periodic solutions to Kaplan-Yorke type delay differential equation-Ⅰ, Ann. Differ. Equations, 30 (2014), 97-114.
|
show all references
References:
[1] |
R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.
![]() ![]() |
[2] |
O. Diekmann, S. A. van Gils, S. M. Verduyn-Lunel and H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, App. Math. Sci. 110, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[3] |
P. Dormayer,
Smooth bifurcation of symmetric periodic solutions of functional differential equations, J. Differ. Equations., 82 (1989), 109-155.
doi: 10.1016/0022-0396(89)90170-8. |
[4] |
B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Refuting the odd number limitation of time-delayed feedback control, Phys. Rev. Lett. 98 (2007), 114101.
doi: 10.1103/PhysRevLett.98.114101. |
[5] |
B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Beyond the odd-number limitation of time-delayed feedback control, In Handbook of Chaos Control, (E. Schöll et al., eds.), Wiley-VCH, Weinheim, (2008), 73–84. |
[6] |
B. Fiedler, V. Flunkert, P. Hövel and E. Schöll,
Delay stabilization of periodic orbits in coupled oscillator systems, Phil. Trans. Roy. Soc. A., 368 (2010), 319-341.
doi: 10.1098/rsta.2009.0232. |
[7] |
B. Fiedler and J. Mallet-Paret,
Connections between Morse sets for delay differential equations, J. Reine Angew. Math., 397 (1989), 23-41.
|
[8] |
B. Fiedler and S. Oliva,
Delayed feedback control of a delay equation at Hopf bifurcation, J. Dyn. Differ. Equations, 28 (2016), 1357-1391.
doi: 10.1007/s10884-015-9456-8. |
[9] |
J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. |
[10] |
J. K. Hale and S. M. Verduyn-Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[11] |
F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, In Handbook of Differential Equations: Ordinary Differential Equations, Vol. III. (A. Cañada, P. Drbek and A. Fonda eds.), Elsevier/North-Holland, Amsterdam, (2006), 435–545.
doi: 10.1016/S1874-5725(06)80009-X. |
[12] |
W. Just, B. Fiedler, V. Flunkert, M. Georgi, P. Hövel and E. Schöll, Beyond the odd number limitation: A bifurcation analysis of time-delayed feedback control, Phys. Rev. E., 76 (2007), 026210, 11pp.
doi: 10.1103/PhysRevE.76.026210. |
[13] |
J. L. Kaplan and J. A. Yorke,
Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Analysis Appl., 48 (1974), 317-324.
doi: 10.1016/0022-247X(74)90162-0. |
[14] |
V. Kolmanovski and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer, Dordrecht, 1999.
doi: 10.1007/978-94-017-1965-0. |
[15] |
T. Krisztin,
Global dynamics of delay differential equations, Period. Math. Hung., 56 (2008), 83-95.
doi: 10.1007/s10998-008-5083-x. |
[16] |
J. Kurzweil, Small delays don't matter, In Proc. Symp. Differential Equations and Dynamical Systems, Warwick 1969 (D. Chillingworth ed.), Springer-Verlag Berlin, 1971, 47–49. |
[17] |
A. López Nieto, Heteroclinic connections in delay equations, Master's Thesis, Freie Universität Berlin, 2017. |
[18] |
J. Mallet-Paret,
Morse decompositions for differential delay equations, J. Differ. Equations, 72 (1988), 270-315.
doi: 10.1016/0022-0396(88)90157-X. |
[19] |
J. Mallet-Paret and R. D. Nussbaum,
Boundary layer phenomena for differential-delay equations with state-dependent time-lags: Ⅰ, Arch. Ration. Mech. Analysis, 120 (1992), 99-146.
doi: 10.1007/BF00418497. |
[20] |
J. Mallet-Paret and R. D. Nussbaum,
Boundary layer phenomena for differential-delay equations with state-dependent time-lags: Ⅱ, J. Reine Angew. Math., 477 (1996), 129-197.
doi: 10.1515/crll.1996.477.129. |
[21] |
J. Mallet-Paret and R. D. Nussbaum,
Boundary layer phenomena for differential-delay equations with state-dependent time-lags: Ⅲ, J. Differ. Equations, 189 (2003), 640-692.
doi: 10.1016/S0022-0396(02)00088-8. |
[22] |
J. Mallet-Paret and R. D. Nussbaum,
Stability of periodic solutions of state-dependent delay-differential equations, J. Differ. Equations, 250 (2011), 4085-4103.
doi: 10.1016/j.jde.2010.10.023. |
[23] |
J. Mallet-Paret and G. Sell,
Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions, J. Differ. Equations, 125 (1996), 385-440.
doi: 10.1006/jdeq.1996.0036. |
[24] |
J. Mallet-Paret and G. Sell,
The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differ. Equations, 125 (1996), 441-489.
doi: 10.1006/jdeq.1996.0037. |
[25] |
A. D. Myshkis, General theory of differential equations with retarded argument, AMS Translations, Ser. I, vol. 4. AMS, Providence (1962), Translated from Uspekhi Mat. Nauk (N.S.), 4 (1949), 99-141. |
[26] |
H. Nakajima,
On analytical properties of delayed feedback control of chaos, Phys. Lett. A., 232 (1997), 207-210.
doi: 10.1016/S0375-9601(97)00362-9. |
[27] |
H. Nakajima and Y. Ueda,
Half-period delayed feedback control for dynamical systems with symmetries, Phys. Rev. E., 58 (1998), 1757-1763.
doi: 10.1103/PhysRevE.58.1757. |
[28] |
R. G. Nussbaum, Differential-Delay Equations with Two Time Lags, Mem. Am. Math. Soc., 205, Providence, RI, 1978.
doi: 10.1090/memo/0205. |
[29] |
R. G. Nussbaum, Functional differential equations, In Handbook of Dynamical Systems, Vol. Ⅱ. (B. Fiedler ed.), Elsevier/North-Holland, Amsterdam, (2002), 461–499.
doi: 10.1016/S1874-575X(02)80031-5. |
[30] |
K. Pyragas,
Continuous control of chaos by self-controlling feedback, Theoretical and Practical Methods in Non-linear Dynamics, (1996), 118-123.
doi: 10.1016/B978-012396840-1/50038-2. |
[31] |
K. Pyragas, A twenty-year review of time-delay feedback control and recent developments, Int. Symp. Nonl. Th. Appl., Palma de Mallorca, 1 (2014), 683–686.
doi: 10.15248/proc.1.683. |
[32] |
H. -O. Walther,
Bifurcation from periodic solutions in functional differential equations, Math. Z., 182 (1983), 269-289.
doi: 10.1007/BF01175630. |
[33] |
H.-O. Walther, The 2-dimensional attractor of $\dot{x}(t) = -\mu x(t) + f(x(t-1))$, Mem. Amer. Math. Soc., 113 (1995), vi+76 pp.
doi: 10.1090/memo/0544. |
[34] |
H. -O. Walther,
Topics in delay differential equations, Jahresber. DMV, 116 (2014), 87-114.
doi: 10.1365/s13291-014-0086-6. |
[35] |
E. M. Wright,
On a non-linear differential-difference equation, J. Reine Angew. Math., 194 (1955), 66-87.
doi: 10.1515/crll.1955.194.66. |
[36] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[37] |
J. Yu and Z. Guo,
A survey on the periodic solutions to Kaplan-Yorke type delay differential equation-Ⅰ, Ann. Differ. Equations, 30 (2014), 97-114.
|







[1] |
D. Q. Cao, Y. R. Yang, Y. M. Ge. Characteristic equation approach to stability measures of linear neutral systems with multiple time delays. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 95-105. doi: 10.3934/dcds.2007.17.95 |
[2] |
Elena Braverman, Karel Hasik, Anatoli F. Ivanov, Sergei I. Trofimchuk. A cyclic system with delay and its characteristic equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 1-29. doi: 10.3934/dcdss.2020001 |
[3] |
Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058 |
[4] |
Zhiling Guo, Shugen Chai. Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022001 |
[5] |
P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220 |
[6] |
Kazuki Himoto, Hideaki Matsunaga. The limits of solutions of a linear delay integral equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3033-3048. doi: 10.3934/dcdsb.2020050 |
[7] |
Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 |
[8] |
Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823 |
[9] |
Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 |
[10] |
Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793 |
[11] |
Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021 |
[12] |
Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130 |
[13] |
Shangbing Ai. Multiple positive periodic solutions for a delay host macroparasite model. Communications on Pure and Applied Analysis, 2004, 3 (2) : 175-182. doi: 10.3934/cpaa.2004.3.175 |
[14] |
Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801 |
[15] |
Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028 |
[16] |
Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205 |
[17] |
Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633 |
[18] |
Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655 |
[19] |
Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91 |
[20] |
Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021052 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]