-
Previous Article
Effective Hamiltonian dynamics via the Maupertuis principle
- DCDS-S Home
- This Issue
-
Next Article
Nonautonomous gradient-like vector fields on the circle: Classification, structural stability and autonomization
Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity
1. | School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States |
2. | Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1, Canada |
$\Delta u+{{u}_{yy}}+f(x,u) = 0,\quad (x,y)\in {{\mathbb{R}}^{N}}\times \mathbb{R}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)$ |
$ f $ |
$ x $ |
$ f(\cdot,0)\equiv 0 $ |
$ y $ |
$ |x|\to\infty $ |
$ y $ |
$ f_u(x,0) $ |
$ f_{uu}(x,0) $ |
$ f(x,\cdot) $ |
References:
[1] |
S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators, volume 29 of Mathematical Notes, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. |
[2] |
D. Bambusi, An introduction to Birkhoff normal form, Università di Milano, 2014. |
[3] |
H. W. Broer, S. N. Chow, Y. Kim and G. Vegter,
A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys., 44 (1993), 389-432.
doi: 10.1007/BF00953660. |
[4] |
H. W. Broer and G. B. Huitema,
A proof of the isoenergetic KAM-theorem from the "ordinary" one, Journal of Differential Equations, 90 (1991), 52-60.
doi: 10.1016/0022-0396(91)90160-B. |
[5] |
B. Grébert, Birkhoff normal form and Hamiltonian PDEs, Séminaries and Congrès, 15 (2007), 1–46. |
[6] |
M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011.
doi: 10.1007/978-0-85729-112-7. |
[7] |
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994.
doi: 10.1007/978-3-0348-8540-9. |
[8] |
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. |
[9] |
K. Kirchgässner,
Wave solutions of reversible systems and applications, Journal of Differential Equations, 45 (1982), 113-127.
doi: 10.1016/0022-0396(82)90058-4. |
[10] |
A. Mielke, Hamiltonian and Lagrangian Flows on Center Manifolds, Lecture Notes in Mathematics, 1489. Springer-Verlag, 1991.
doi: 10.1007/BFb0097544. |
[11] |
P. Poláčik and D. A. Valdebenito,
Existence of quasiperiodic solutions of elliptic equations on $\mathbb R^{N+1}$ via center manifold and KAM theorems, Journal of Differential Equations, 262 (2017), 6109-6164.
doi: 10.1016/j.jde.2017.02.027. |
[12] |
J. Pöschel,
Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 35 (1982), 653-696.
doi: 10.1002/cpa.3160350504. |
[13] |
M. Reed and B. Simon, Methods of Mathematical Physics, Volume Ⅳ, Academic Press, New York-London, 1979.
![]() ![]() |
[14] |
J. Scheurle,
Bifurcation of quasiperiodic solutions from equilibrium points of reversible dynamical systems, Arch. Rational Mech. Anal., 97 (1987), 103-139.
doi: 10.1007/BF00251911. |
[15] |
Y. Shi, J. Xu and X. Xu, On quasi-periodic solutions for generalized Boussinesq equation with quadratic nonlinearity, J. Math. Phys., 56 (2015), 022703, 15pp.
doi: 10.1063/1.4906810. |
[16] |
J. M. Tuwankotta and F. Verhulst,
Hamiltonian systems with widely separated frequencies, Nonlinearity, 16 (2003), 689-706.
doi: 10.1088/0951-7715/16/2/319. |
[17] |
C. Valls,
Existence of quasi-periodic solutions for elliptic equations on a cylindrical domain, Comentarii Mathematici Helvetici, 81 (2006), 783-800.
doi: 10.4171/CMH/73. |
[18] |
A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, in Dynamics Reported, Springer-Verlag, 1 (1992), 125–163. |
show all references
References:
[1] |
S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators, volume 29 of Mathematical Notes, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. |
[2] |
D. Bambusi, An introduction to Birkhoff normal form, Università di Milano, 2014. |
[3] |
H. W. Broer, S. N. Chow, Y. Kim and G. Vegter,
A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys., 44 (1993), 389-432.
doi: 10.1007/BF00953660. |
[4] |
H. W. Broer and G. B. Huitema,
A proof of the isoenergetic KAM-theorem from the "ordinary" one, Journal of Differential Equations, 90 (1991), 52-60.
doi: 10.1016/0022-0396(91)90160-B. |
[5] |
B. Grébert, Birkhoff normal form and Hamiltonian PDEs, Séminaries and Congrès, 15 (2007), 1–46. |
[6] |
M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011.
doi: 10.1007/978-0-85729-112-7. |
[7] |
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994.
doi: 10.1007/978-3-0348-8540-9. |
[8] |
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. |
[9] |
K. Kirchgässner,
Wave solutions of reversible systems and applications, Journal of Differential Equations, 45 (1982), 113-127.
doi: 10.1016/0022-0396(82)90058-4. |
[10] |
A. Mielke, Hamiltonian and Lagrangian Flows on Center Manifolds, Lecture Notes in Mathematics, 1489. Springer-Verlag, 1991.
doi: 10.1007/BFb0097544. |
[11] |
P. Poláčik and D. A. Valdebenito,
Existence of quasiperiodic solutions of elliptic equations on $\mathbb R^{N+1}$ via center manifold and KAM theorems, Journal of Differential Equations, 262 (2017), 6109-6164.
doi: 10.1016/j.jde.2017.02.027. |
[12] |
J. Pöschel,
Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 35 (1982), 653-696.
doi: 10.1002/cpa.3160350504. |
[13] |
M. Reed and B. Simon, Methods of Mathematical Physics, Volume Ⅳ, Academic Press, New York-London, 1979.
![]() ![]() |
[14] |
J. Scheurle,
Bifurcation of quasiperiodic solutions from equilibrium points of reversible dynamical systems, Arch. Rational Mech. Anal., 97 (1987), 103-139.
doi: 10.1007/BF00251911. |
[15] |
Y. Shi, J. Xu and X. Xu, On quasi-periodic solutions for generalized Boussinesq equation with quadratic nonlinearity, J. Math. Phys., 56 (2015), 022703, 15pp.
doi: 10.1063/1.4906810. |
[16] |
J. M. Tuwankotta and F. Verhulst,
Hamiltonian systems with widely separated frequencies, Nonlinearity, 16 (2003), 689-706.
doi: 10.1088/0951-7715/16/2/319. |
[17] |
C. Valls,
Existence of quasi-periodic solutions for elliptic equations on a cylindrical domain, Comentarii Mathematici Helvetici, 81 (2006), 783-800.
doi: 10.4171/CMH/73. |
[18] |
A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, in Dynamics Reported, Springer-Verlag, 1 (1992), 125–163. |
[1] |
Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092 |
[2] |
Shui-Nee Chow, Kening Lu, Yun-Qiu Shen. Normal forms for quasiperiodic evolutionary equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 65-94. doi: 10.3934/dcds.1996.2.65 |
[3] |
Yajing Zhang, Jianghao Hao. Existence of positive entire solutions for semilinear elliptic systems in the whole space. Communications on Pure and Applied Analysis, 2009, 8 (2) : 719-724. doi: 10.3934/cpaa.2009.8.719 |
[4] |
Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707 |
[5] |
Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50 |
[6] |
Alan V. Lair, Ahmed Mohammed. Entire large solutions of semilinear elliptic equations of mixed type. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1607-1618. doi: 10.3934/cpaa.2009.8.1607 |
[7] |
Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623 |
[8] |
Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561 |
[9] |
Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252 |
[10] |
Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249 |
[11] |
Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335 |
[12] |
Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115 |
[13] |
Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137 |
[14] |
Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure and Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715 |
[15] |
Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure and Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839 |
[16] |
Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213 |
[17] |
Chiara Caracciolo, Ugo Locatelli. Computer-assisted estimates for Birkhoff normal forms. Journal of Computational Dynamics, 2020, 7 (2) : 425-460. doi: 10.3934/jcd.2020017 |
[18] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[19] |
Yu-Juan Sun, Li Zhang, Wan-Tong Li, Zhi-Cheng Wang. Entire solutions in nonlocal monostable equations: Asymmetric case. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1049-1072. doi: 10.3934/cpaa.2019051 |
[20] |
Alberto Farina. Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2505-2511. doi: 10.3934/dcds.2014.34.2505 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]