
-
Previous Article
Time-scaling transformation for optimal control problem with time-varying delay
- DCDS-S Home
- This Issue
-
Next Article
Optimization model and solution method for dynamically correlated two-product newsvendor problems based on Copula
A multi-stage method for joint pricing and inventory model with promotion constrains
1. | Business School, Central South University, Changsha 410083, China |
2. | Department of Mathematics and Statistics, Curtin University, Perth, 6102, Australia |
3. | School of Economics and Management, Hunan University of Science and Engineering, Yongzhou 425199, China |
4. | School of Accountancy, Hunan University of Finance and Economics, Changsha 410205, China |
5. | Department of Mathematics and Statistics, Curtin University, Perth, 6102, Australia |
6. | Coordinated Innovation Center for Computable Modeling in Management Science, University of Finance and Economics, Tianjin 300222, China |
In this paper, we consider a joint pricing and inventory problem with promotion constrains over a finite planning horizon for a single fast-moving consumer good under monopolistic environment. The decision on the inventory is realized through the decision on inventory replenishment, i.e., decision on the quantity to be ordered. The demand function takes into account all reference price mechanisms. The main difficulty in solving this problem is how to deal with the binary logical decision variables. It is shown that the problem is equivalent to a quadratic programming problem involving binary decision variables. This quadratic programming problem with binary decision variables can be expressed as a series of conventional quadratic programming problems, each of which can be easily solved. The global optimal solution can then be obtained readily from the global solutions of the conventional quadratic programming problems. This method works well when the planning horizon is short. For longer planning horizon, we propose a multi-stage method for finding a near-optimal solution. In numerical simulation, the accuracy and efficiency of this multi-stage method is compared with a genetic algorithm. The results obtained validate the applicability of the constructed model and the effectiveness of the approach proposed. They also provide several interesting and useful managerial insights.
References:
[1] |
H.-s. Ahn, M. Gümüş and P. Kaminsky,
Pricing and manufacturing decisions when demand is a function of prices in multiple periods, Operations Research, 55 (2007), 1039-1057.
doi: 10.1287/opre.1070.0411. |
[2] |
H. Arslan and S. Kachani, Dynamic Pricing under Consumer Reference-Price Effects, Wiley Encyclopedia of Operations Research and Management Science, 2010.
doi: 10.1002/9780470400531.eorms0273. |
[3] |
M. Baucells, M. Weber and F. Welfens,
Reference-point formation and updating, Management Science, 57 (2011), 506-519.
doi: 10.1287/mnsc.1100.1286. |
[4] |
W. Bi, G. Li and M. Liu,
Dynamic pricing with stochastic reference effects based on a finite memory window, International Journal of Production Research, 55 (2017), 3331-3348.
doi: 10.1080/00207543.2016.1221160. |
[5] |
G. R. Bitran and S. V. Mondschein,
Periodic pricing of seasonal products in retailing, Management Science, 43 (1997), 64-79.
doi: 10.1287/mnsc.43.1.64. |
[6] |
M. Chen and Z.-L. Chen,
Recent developments in dynamic pricing research: Multiple products, competition, and limited demand information, Production and Operations Management, 24 (2015), 704-731.
doi: 10.1111/poms.12295. |
[7] |
M. Chen, Z.-L. Chen, G. Pundoor, S. Acharya and J. Yi,
Markdown optimization at multiple stores, IIE Transactions, 47 (2015), 84-108.
doi: 10.1080/0740817X.2014.916459. |
[8] |
X. Chen, P. Hu and Z. Hu,
Efficient algorithms for the dynamic pricing problem with reference price effect, Management Science, 63 (2016), 4389-4408.
doi: 10.1287/mnsc.2016.2554. |
[9] |
X. Chen, P. Hu, S. Shum and Y. Zhang,
Dynamic stochastic inventory management with reference price effects, Operations Research, 64 (2016), 1529-1536.
doi: 10.1287/opre.2016.1524. |
[10] |
X. Chen, S. W. Shum, P. Hu and Y. Zhang, Stochastic inventory model with reference price effects, Operations Research, (2013). |
[11] |
X. Chen and D. Simchi-Levi,
Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The finite horizon case, Operations Research, 52 (2004), 887-896.
doi: 10.1287/opre.1040.0127. |
[12] |
X. Chen and D. Simchi-Levi, Pricing and inventory management, The Oxford Handbook of Pricing Management, (2012), 784Ƀ824.
doi: 10.1093/oxfordhb/9780199543175.013.0030. |
[13] |
M. C. Cohen, N.-H. Z. Leung, K. Panchamgam, G. Perakis and A. Smith,
The impact of linear optimization on promotion planning, Operations Research, 65 (2017), 446-468.
doi: 10.1287/opre.2016.1573. |
[14] |
P. R. Dickson and A. G. Sawyer, The price knowledge and search of supermarket shoppers, The Journal of Marketing, (1990), 42-53. |
[15] |
W. Elmaghraby and P. Keskinocak,
Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions, Management Science, 49 (2003), 1287-1309.
|
[16] |
G. Fibich, A. Gavious and O. Lowengart,
Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects, Operations Research, 51 (2003), 721-734.
doi: 10.1287/opre.51.5.721.16758. |
[17] |
K. Gedenk, S. A. Neslin and K. L. Ailawadi, Sales promotion, Retailing in the 21st Century, (2006), 345-359. |
[18] |
L. Gimpl-Heersink, Joint Pricing and Inventory Control under Reference Price Effects, PhD thesis, WU Vienna University of Economics and Business, 2008.
doi: 10.3726/b13901. |
[19] |
E. A. Greenleaf,
The impact of reference price effects on the profitability of price promotions, Marketing Science, 14 (1995), 82-104.
doi: 10.1287/mksc.14.1.82. |
[20] |
M. G. Güler,
The value of modeling with reference effects in stochastic inventory and pricing problems, Expert Systems with Applications, 40 (2013), 6593-6600.
|
[21] |
M. G. Güler, T. Bilgiç and R. Güllü,
Joint inventory and pricing decisions with reference effects, IIE Transactions, 46 (2014), 330-343.
|
[22] |
M. G. Güler, T. Bilgiç and R. Güllü,
Joint pricing and inventory control for additive demand models with reference effects, Annals of Operations Research, 226 (2015), 255-276.
doi: 10.1007/s10479-014-1706-3. |
[23] |
R. L. Hall and C. J. Hitch,
Price theory and business behaviour, Oxford Economic Papers, 2 (1939), 12-45.
doi: 10.1093/oxepap/os-2.1.12. |
[24] |
P. K. Kopalle, A. G. Rao and J. L. Assuncao,
Asymmetric reference price effects and dynamic pricing policies, Marketing Science, 15 (1996), 60-85.
doi: 10.1287/mksc.15.1.60. |
[25] |
D. Levy, M. Bergen, S. Dutta and R. Venable,
The magnitude of menu costs: direct evidence from large US supermarket chains, The Quarterly Journal of Economics, 112 (1997), 791-824.
doi: 10.1162/003355397555352. |
[26] |
D. Levy, S. Dutta, M. Bergen and R. Venable,
Price adjustment at multiproduct retailers, Managerial and Decision Economics, 19 (1998), 81-120.
doi: 10.1002/(SICI)1099-1468(199803)19:2<81::AID-MDE867>3.0.CO;2-W. |
[27] |
T. Mazumdar, S. Raj and I. Sinha,
Reference price research: Review and propositions, Journal of Marketing, 69 (2005), 84-102.
doi: 10.1509/jmkg.2005.69.4.84. |
[28] |
D. C. Montgomery, M. Bazaraa and A. K. Keswani,
Inventory models with a mixture of backorders and lost sales, Naval Research Logistics (NRL), 20 (1973), 255-263.
doi: 10.1002/nav.3800200205. |
[29] |
J. Nasiry and I. Popescu,
Dynamic pricing with loss-averse consumers and peak-end anchoring, Operations Research, 59 (2011), 1361-1368.
doi: 10.1287/opre.1110.0952. |
[30] |
S. Netessine,
Dynamic pricing of inventory/capacity with infrequent price changes, European Journal of Operational Research, 174 (2006), 553-580.
doi: 10.1016/j.ejor.2004.12.015. |
[31] |
I. Popescu and Y. Wu,
Dynamic pricing strategies with reference effects, Operations Research, 55 (2007), 413-429.
doi: 10.1287/opre.1070.0393. |
[32] |
S. A. Smith, N. Agrawal and S. H. McIntyre,
A discrete optimization model for seasonal merchandise planning, Journal of Retailing, 74 (1998), 193-221.
doi: 10.1016/S0022-4359(99)80093-1. |
[33] |
Y. Song, S. Ray and T. Boyaci,
Optimal dynamic joint inventory-pricing control for multiplicative demand with fixed order costs and lost sales, Operations Research, 57 (2009), 245-250.
doi: 10.1287/opre.1080.0530. |
[34] |
A. Taudes and C. Rudloff,
Integrating inventory control and a price change in the presence of reference price effects: A two-period model, Mathematical Methods of Operations Research, 75 (2012), 29-65.
doi: 10.1007/s00186-011-0374-1. |
[35] |
A. Tversky and D. Kahneman,
Loss aversion in riskless choice: A reference-dependent model, The Quarterly Journal of Economics, 106 (1991), 1039-1061.
|
[36] |
T. L. Urban,
Coordinating pricing and inventory decisions under reference price effects, International Journal of Manufacturing Technology and Management, 13 (2008), 78-94.
doi: 10.1504/IJMTM.2008.015975. |
[37] |
S. Wu, Q. Liu and R. Q. Zhang,
The reference effects on a retailer's eynamic pricing and inventory strategies with strategic consumers, Operations Research, 63 (2015), 1320-1335.
doi: 10.1287/opre.2015.1440. |
[38] |
C. A. Yano and S. M. Gilbert,
Coordinated pricing and production/procurement decisions: a review, Managing Business Interfaces, 16 (2005), 65-103.
doi: 10.1007/0-387-25002-6_3. |
[39] |
M. J. Zbaracki, M. Ritson, D. Levy, S. Dutta and M. Bergen,
Managerial and customer costs of price adjustment: Direct evidence from industrial markets, The Review of Economics and Statistics, 86 (2004), 514-533.
|
[40] |
Y. Zhang, Essays on Robust Optimization, Integrated Inventory and Pricing, and Reference Price Effect, PhD thesis, University of Illinois at Urbana-Champaign, 2010. |
show all references
References:
[1] |
H.-s. Ahn, M. Gümüş and P. Kaminsky,
Pricing and manufacturing decisions when demand is a function of prices in multiple periods, Operations Research, 55 (2007), 1039-1057.
doi: 10.1287/opre.1070.0411. |
[2] |
H. Arslan and S. Kachani, Dynamic Pricing under Consumer Reference-Price Effects, Wiley Encyclopedia of Operations Research and Management Science, 2010.
doi: 10.1002/9780470400531.eorms0273. |
[3] |
M. Baucells, M. Weber and F. Welfens,
Reference-point formation and updating, Management Science, 57 (2011), 506-519.
doi: 10.1287/mnsc.1100.1286. |
[4] |
W. Bi, G. Li and M. Liu,
Dynamic pricing with stochastic reference effects based on a finite memory window, International Journal of Production Research, 55 (2017), 3331-3348.
doi: 10.1080/00207543.2016.1221160. |
[5] |
G. R. Bitran and S. V. Mondschein,
Periodic pricing of seasonal products in retailing, Management Science, 43 (1997), 64-79.
doi: 10.1287/mnsc.43.1.64. |
[6] |
M. Chen and Z.-L. Chen,
Recent developments in dynamic pricing research: Multiple products, competition, and limited demand information, Production and Operations Management, 24 (2015), 704-731.
doi: 10.1111/poms.12295. |
[7] |
M. Chen, Z.-L. Chen, G. Pundoor, S. Acharya and J. Yi,
Markdown optimization at multiple stores, IIE Transactions, 47 (2015), 84-108.
doi: 10.1080/0740817X.2014.916459. |
[8] |
X. Chen, P. Hu and Z. Hu,
Efficient algorithms for the dynamic pricing problem with reference price effect, Management Science, 63 (2016), 4389-4408.
doi: 10.1287/mnsc.2016.2554. |
[9] |
X. Chen, P. Hu, S. Shum and Y. Zhang,
Dynamic stochastic inventory management with reference price effects, Operations Research, 64 (2016), 1529-1536.
doi: 10.1287/opre.2016.1524. |
[10] |
X. Chen, S. W. Shum, P. Hu and Y. Zhang, Stochastic inventory model with reference price effects, Operations Research, (2013). |
[11] |
X. Chen and D. Simchi-Levi,
Coordinating inventory control and pricing strategies with random demand and fixed ordering cost: The finite horizon case, Operations Research, 52 (2004), 887-896.
doi: 10.1287/opre.1040.0127. |
[12] |
X. Chen and D. Simchi-Levi, Pricing and inventory management, The Oxford Handbook of Pricing Management, (2012), 784Ƀ824.
doi: 10.1093/oxfordhb/9780199543175.013.0030. |
[13] |
M. C. Cohen, N.-H. Z. Leung, K. Panchamgam, G. Perakis and A. Smith,
The impact of linear optimization on promotion planning, Operations Research, 65 (2017), 446-468.
doi: 10.1287/opre.2016.1573. |
[14] |
P. R. Dickson and A. G. Sawyer, The price knowledge and search of supermarket shoppers, The Journal of Marketing, (1990), 42-53. |
[15] |
W. Elmaghraby and P. Keskinocak,
Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions, Management Science, 49 (2003), 1287-1309.
|
[16] |
G. Fibich, A. Gavious and O. Lowengart,
Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects, Operations Research, 51 (2003), 721-734.
doi: 10.1287/opre.51.5.721.16758. |
[17] |
K. Gedenk, S. A. Neslin and K. L. Ailawadi, Sales promotion, Retailing in the 21st Century, (2006), 345-359. |
[18] |
L. Gimpl-Heersink, Joint Pricing and Inventory Control under Reference Price Effects, PhD thesis, WU Vienna University of Economics and Business, 2008.
doi: 10.3726/b13901. |
[19] |
E. A. Greenleaf,
The impact of reference price effects on the profitability of price promotions, Marketing Science, 14 (1995), 82-104.
doi: 10.1287/mksc.14.1.82. |
[20] |
M. G. Güler,
The value of modeling with reference effects in stochastic inventory and pricing problems, Expert Systems with Applications, 40 (2013), 6593-6600.
|
[21] |
M. G. Güler, T. Bilgiç and R. Güllü,
Joint inventory and pricing decisions with reference effects, IIE Transactions, 46 (2014), 330-343.
|
[22] |
M. G. Güler, T. Bilgiç and R. Güllü,
Joint pricing and inventory control for additive demand models with reference effects, Annals of Operations Research, 226 (2015), 255-276.
doi: 10.1007/s10479-014-1706-3. |
[23] |
R. L. Hall and C. J. Hitch,
Price theory and business behaviour, Oxford Economic Papers, 2 (1939), 12-45.
doi: 10.1093/oxepap/os-2.1.12. |
[24] |
P. K. Kopalle, A. G. Rao and J. L. Assuncao,
Asymmetric reference price effects and dynamic pricing policies, Marketing Science, 15 (1996), 60-85.
doi: 10.1287/mksc.15.1.60. |
[25] |
D. Levy, M. Bergen, S. Dutta and R. Venable,
The magnitude of menu costs: direct evidence from large US supermarket chains, The Quarterly Journal of Economics, 112 (1997), 791-824.
doi: 10.1162/003355397555352. |
[26] |
D. Levy, S. Dutta, M. Bergen and R. Venable,
Price adjustment at multiproduct retailers, Managerial and Decision Economics, 19 (1998), 81-120.
doi: 10.1002/(SICI)1099-1468(199803)19:2<81::AID-MDE867>3.0.CO;2-W. |
[27] |
T. Mazumdar, S. Raj and I. Sinha,
Reference price research: Review and propositions, Journal of Marketing, 69 (2005), 84-102.
doi: 10.1509/jmkg.2005.69.4.84. |
[28] |
D. C. Montgomery, M. Bazaraa and A. K. Keswani,
Inventory models with a mixture of backorders and lost sales, Naval Research Logistics (NRL), 20 (1973), 255-263.
doi: 10.1002/nav.3800200205. |
[29] |
J. Nasiry and I. Popescu,
Dynamic pricing with loss-averse consumers and peak-end anchoring, Operations Research, 59 (2011), 1361-1368.
doi: 10.1287/opre.1110.0952. |
[30] |
S. Netessine,
Dynamic pricing of inventory/capacity with infrequent price changes, European Journal of Operational Research, 174 (2006), 553-580.
doi: 10.1016/j.ejor.2004.12.015. |
[31] |
I. Popescu and Y. Wu,
Dynamic pricing strategies with reference effects, Operations Research, 55 (2007), 413-429.
doi: 10.1287/opre.1070.0393. |
[32] |
S. A. Smith, N. Agrawal and S. H. McIntyre,
A discrete optimization model for seasonal merchandise planning, Journal of Retailing, 74 (1998), 193-221.
doi: 10.1016/S0022-4359(99)80093-1. |
[33] |
Y. Song, S. Ray and T. Boyaci,
Optimal dynamic joint inventory-pricing control for multiplicative demand with fixed order costs and lost sales, Operations Research, 57 (2009), 245-250.
doi: 10.1287/opre.1080.0530. |
[34] |
A. Taudes and C. Rudloff,
Integrating inventory control and a price change in the presence of reference price effects: A two-period model, Mathematical Methods of Operations Research, 75 (2012), 29-65.
doi: 10.1007/s00186-011-0374-1. |
[35] |
A. Tversky and D. Kahneman,
Loss aversion in riskless choice: A reference-dependent model, The Quarterly Journal of Economics, 106 (1991), 1039-1061.
|
[36] |
T. L. Urban,
Coordinating pricing and inventory decisions under reference price effects, International Journal of Manufacturing Technology and Management, 13 (2008), 78-94.
doi: 10.1504/IJMTM.2008.015975. |
[37] |
S. Wu, Q. Liu and R. Q. Zhang,
The reference effects on a retailer's eynamic pricing and inventory strategies with strategic consumers, Operations Research, 63 (2015), 1320-1335.
doi: 10.1287/opre.2015.1440. |
[38] |
C. A. Yano and S. M. Gilbert,
Coordinated pricing and production/procurement decisions: a review, Managing Business Interfaces, 16 (2005), 65-103.
doi: 10.1007/0-387-25002-6_3. |
[39] |
M. J. Zbaracki, M. Ritson, D. Levy, S. Dutta and M. Bergen,
Managerial and customer costs of price adjustment: Direct evidence from industrial markets, The Review of Economics and Statistics, 86 (2004), 514-533.
|
[40] |
Y. Zhang, Essays on Robust Optimization, Integrated Inventory and Pricing, and Reference Price Effect, PhD thesis, University of Illinois at Urbana-Champaign, 2010. |














Variable | Description |
length of the planning horizon | |
time period | |
the maximum total number of promotion times in the planning horizon | |
the minimum separating period (a separating period is a period which spaces out the two successive promotions) | |
length of consumers' memory window | |
permitted minimum promotion price | |
full/normal price without promotion | |
permitted maximum promotion price | |
price in period |
|
permitted minimum ordering quantity | |
permitted maximum ordering quantity | |
ordering quantity in period |
|
marking decision variable of promotion in period t, set |
|
permitted maximum inventory level in each period | |
initial inventory level in period t, where |
|
initial inventory level at the beginning of the planning horizon | |
per unit ordering cost | |
per unit inventory cost | |
per unit back-order cost | |
demand at period t | |
discount factor |
Variable | Description |
length of the planning horizon | |
time period | |
the maximum total number of promotion times in the planning horizon | |
the minimum separating period (a separating period is a period which spaces out the two successive promotions) | |
length of consumers' memory window | |
permitted minimum promotion price | |
full/normal price without promotion | |
permitted maximum promotion price | |
price in period |
|
permitted minimum ordering quantity | |
permitted maximum ordering quantity | |
ordering quantity in period |
|
marking decision variable of promotion in period t, set |
|
permitted maximum inventory level in each period | |
initial inventory level in period t, where |
|
initial inventory level at the beginning of the planning horizon | |
per unit ordering cost | |
per unit inventory cost | |
per unit back-order cost | |
demand at period t | |
discount factor |
Conditions (T, L, S) | Enumeration Method ($) | 2-stage Method ($) | 3-stage Stage ($) | 4-stage Method ($) | GA-Roulette Wheel ($) | GA-Tournament ($) | GA-Random ($) |
T=20;S=4; | 320.75 | 318.93 | 320.75 | 320.75 | 319.86 | 314.74 | 320.75 |
T=20;S=3; | 325.35 | 324.92 | 320.75 | 325.16 | 325.16 | 324.34 | 315.19 |
T=20;S=2; | 334.74 | 334.74 | 329.34 | 329.03 | 324.10 | 323.36 | 334.74 |
T=25;S=4; | 354.58 | 354.05 | 353.16 | 354.42 | 348.62 | 348.11 | 352.96 |
T=25;S=3; | 361.58 | 357.05 | 356.39 | 357.59 | 352.84 | 357.74 | 348.27 |
T=25;S=2; | 364.49 | 363.36 | 363.31 | 362.25 | 364.33 | 361.73 | 352.20 |
T=30;S=4; | 380.76 | 378.88 | 377.86 | 379.27 | 370.11 | 380.08 | 375.14 |
T=30;S=3; | 385.20 | 384.27 | 383.96 | 380.66 | 373.42 | 384.22 | 382.70 |
T=30;S=2; | 388.12 | 387.42 | 385.57 | 384.21 | 379.88 | 385.67 | 385.22 |
T=35;S=4; | - | 400.41 | 400.61 | 397.40 | 396.31 | 398.86 | 396.73 |
T=35;S=3; | - | 403.35 | 401.16 | 400.62 | 391.81 | 398.54 | 391.37 |
T=35;S=2; | - | 406.24 | 401.68 | 400.97 | 402.85 | 402.59 | 397.94 |
T=40;S=4; | - | 413.71 | 413.32 | 411.90 | 411.97 | 410.17 | 412.60 |
T=40;S=3; | - | 416.81 | 414.87 | 412.92 | 413.76 | 409.39 | 414.07 |
T=40;S=2; | - | 418.16 | 417.45 | 418.16 | 410.04 | 410.81 | 412.92 |
T=45;S=4; | - | 425.79 | 423.87 | 423.34 | 420.72 | 413.68 | 421.14 |
T=45;S=3; | - | 428.44 | 425.32 | 423.90 | 418.40 | 422.65 | 423.58 |
T=45;S=2; | - | 429.99 | 428.48 | 429.41 | 416.05 | 417.76 | 419.69 |
T=50;S=4; | - | 433.74 | 432.99 | 431.70 | 425.82 | 426.32 | 426.94 |
T=50;S=3; | - | 436.57 | 434.09 | 433.75 | 429.96 | 421.54 | 422.15 |
T=50;S=2; | - | 439.00 | 439.75 | 437.98 | 436.14 | 427.98 | 423.56 |
T=55;S=4; | - | 441.03 | 439.20 | 438.03 | 438.62 | 429.32 | 430.26 |
T=55;S=3; | - | 443.12 | 442.14 | 443.22 | 442.49 | 436.26 | 433.66 |
T=55;S=2; | - | 446.04 | 446.39 | 446.14 | 439.20 | 443.98 | 440.99 |
Conditions (T, L, S) | Enumeration Method ($) | 2-stage Method ($) | 3-stage Stage ($) | 4-stage Method ($) | GA-Roulette Wheel ($) | GA-Tournament ($) | GA-Random ($) |
T=20;S=4; | 320.75 | 318.93 | 320.75 | 320.75 | 319.86 | 314.74 | 320.75 |
T=20;S=3; | 325.35 | 324.92 | 320.75 | 325.16 | 325.16 | 324.34 | 315.19 |
T=20;S=2; | 334.74 | 334.74 | 329.34 | 329.03 | 324.10 | 323.36 | 334.74 |
T=25;S=4; | 354.58 | 354.05 | 353.16 | 354.42 | 348.62 | 348.11 | 352.96 |
T=25;S=3; | 361.58 | 357.05 | 356.39 | 357.59 | 352.84 | 357.74 | 348.27 |
T=25;S=2; | 364.49 | 363.36 | 363.31 | 362.25 | 364.33 | 361.73 | 352.20 |
T=30;S=4; | 380.76 | 378.88 | 377.86 | 379.27 | 370.11 | 380.08 | 375.14 |
T=30;S=3; | 385.20 | 384.27 | 383.96 | 380.66 | 373.42 | 384.22 | 382.70 |
T=30;S=2; | 388.12 | 387.42 | 385.57 | 384.21 | 379.88 | 385.67 | 385.22 |
T=35;S=4; | - | 400.41 | 400.61 | 397.40 | 396.31 | 398.86 | 396.73 |
T=35;S=3; | - | 403.35 | 401.16 | 400.62 | 391.81 | 398.54 | 391.37 |
T=35;S=2; | - | 406.24 | 401.68 | 400.97 | 402.85 | 402.59 | 397.94 |
T=40;S=4; | - | 413.71 | 413.32 | 411.90 | 411.97 | 410.17 | 412.60 |
T=40;S=3; | - | 416.81 | 414.87 | 412.92 | 413.76 | 409.39 | 414.07 |
T=40;S=2; | - | 418.16 | 417.45 | 418.16 | 410.04 | 410.81 | 412.92 |
T=45;S=4; | - | 425.79 | 423.87 | 423.34 | 420.72 | 413.68 | 421.14 |
T=45;S=3; | - | 428.44 | 425.32 | 423.90 | 418.40 | 422.65 | 423.58 |
T=45;S=2; | - | 429.99 | 428.48 | 429.41 | 416.05 | 417.76 | 419.69 |
T=50;S=4; | - | 433.74 | 432.99 | 431.70 | 425.82 | 426.32 | 426.94 |
T=50;S=3; | - | 436.57 | 434.09 | 433.75 | 429.96 | 421.54 | 422.15 |
T=50;S=2; | - | 439.00 | 439.75 | 437.98 | 436.14 | 427.98 | 423.56 |
T=55;S=4; | - | 441.03 | 439.20 | 438.03 | 438.62 | 429.32 | 430.26 |
T=55;S=3; | - | 443.12 | 442.14 | 443.22 | 442.49 | 436.26 | 433.66 |
T=55;S=2; | - | 446.04 | 446.39 | 446.14 | 439.20 | 443.98 | 440.99 |
Conditions (T, L, S) | Enumeration Method (s) | 2-stage Method (s) | 3-stage Stage (s) | 4-stage Method (s) | GA-Roulette Wheel (s) | GA-Tournament (s) | GA-Random (s) |
T=20;S=4; | 102.52 | 1.26 | 1.02 | 1.23 | 44.19 | 40.76 | 61.43 |
T=20;S=3; | 117.19 | 3.94 | 1.15 | 1.32 | 80.02 | 84.25 | 54.55 |
T=20;S=2; | 186.40 | 8.66 | 1.81 | 1.68 | 78.61 | 102.34 | 100.20 |
T=25;S=4; | 3119.32 | 4.59 | 1.93 | 0.98 | 82.83 | 78.76 | 99.75 |
T=25;S=3; | 3302.93 | 7.21 | 1.75 | 4.26 | 98.68 | 109.26 | 102.26 |
T=25;S=2; | 4183.17 | 16.69 | 4.18 | 2.54 | 121.41 | 108.78 | 118.15 |
T=30;S=4; | 98508.37 | 13.99 | 3.09 | 2.75 | 107.32 | 128.91 | 154.09 |
T=30;S=3; | 100972.64 | 26.12 | 5.46 | 3.03 | 111.41 | 148.17 | 134.50 |
T=30;S=2; | 104669.85 | 31.56 | 3.42 | 3.42 | 111.41 | 137.66 | 138.36 |
T=35;S=4; | - | 40.80 | 6.76 | 4.67 | 164.83 | 151.35 | 126.96 |
T=35;S=3; | - | 64.80 | 11.00 | 4.24 | 148.59 | 177.05 | 166.54 |
T=35;S=2; | - | 63.95 | 8.86 | 6.16 | 138.41 | 151.68 | 122.52 |
T=40;S=4; | - | 177.39 | 12.91 | 5.52 | 166.76 | 197.82 | 166.82 |
T=40;S=3; | - | 208.64 | 12.11 | 5.30 | 172.36 | 136.09 | 165.40 |
T=40;S=2; | - | 284.35 | 17.29 | 4.02 | 136.64 | 145.17 | 136.92 |
T=45;S=4; | - | 529.40 | 19.53 | 8.33 | 217.47 | 179.08 | 161.77 |
T=45;S=3; | - | 611.07 | 24.03 | 10.58 | 194.80 | 177.25 | 211.04 |
T=45;S=2; | - | 946.19 | 31.35 | 10.06 | 180.60 | 182.13 | 184.05 |
T=50;S=4; | - | 3810.19 | 23.29 | 9.68 | 160.34 | 142.00 | 130.60 |
T=50;S=3; | - | 4411.66 | 39.18 | 14.79 | 149.26 | 128.57 | 147.92 |
T=50;S=2; | - | 6273.47 | 71.00 | 19.41 | 146.46 | 124.79 | 147.17 |
T=55;S=4; | - | 14704.68 | 64.87 | 14.13 | 172.13 | 162.80 | 168.13 |
T=55;S=3; | - | 17253.20 | 84.41 | 30.32 | 163.70 | 164.13 | 163.31 |
T=55;S=2; | - | 23839.38 | 239.74 | 49.88 | 158.11 | 178.72 | 172.18 |
Conditions (T, L, S) | Enumeration Method (s) | 2-stage Method (s) | 3-stage Stage (s) | 4-stage Method (s) | GA-Roulette Wheel (s) | GA-Tournament (s) | GA-Random (s) |
T=20;S=4; | 102.52 | 1.26 | 1.02 | 1.23 | 44.19 | 40.76 | 61.43 |
T=20;S=3; | 117.19 | 3.94 | 1.15 | 1.32 | 80.02 | 84.25 | 54.55 |
T=20;S=2; | 186.40 | 8.66 | 1.81 | 1.68 | 78.61 | 102.34 | 100.20 |
T=25;S=4; | 3119.32 | 4.59 | 1.93 | 0.98 | 82.83 | 78.76 | 99.75 |
T=25;S=3; | 3302.93 | 7.21 | 1.75 | 4.26 | 98.68 | 109.26 | 102.26 |
T=25;S=2; | 4183.17 | 16.69 | 4.18 | 2.54 | 121.41 | 108.78 | 118.15 |
T=30;S=4; | 98508.37 | 13.99 | 3.09 | 2.75 | 107.32 | 128.91 | 154.09 |
T=30;S=3; | 100972.64 | 26.12 | 5.46 | 3.03 | 111.41 | 148.17 | 134.50 |
T=30;S=2; | 104669.85 | 31.56 | 3.42 | 3.42 | 111.41 | 137.66 | 138.36 |
T=35;S=4; | - | 40.80 | 6.76 | 4.67 | 164.83 | 151.35 | 126.96 |
T=35;S=3; | - | 64.80 | 11.00 | 4.24 | 148.59 | 177.05 | 166.54 |
T=35;S=2; | - | 63.95 | 8.86 | 6.16 | 138.41 | 151.68 | 122.52 |
T=40;S=4; | - | 177.39 | 12.91 | 5.52 | 166.76 | 197.82 | 166.82 |
T=40;S=3; | - | 208.64 | 12.11 | 5.30 | 172.36 | 136.09 | 165.40 |
T=40;S=2; | - | 284.35 | 17.29 | 4.02 | 136.64 | 145.17 | 136.92 |
T=45;S=4; | - | 529.40 | 19.53 | 8.33 | 217.47 | 179.08 | 161.77 |
T=45;S=3; | - | 611.07 | 24.03 | 10.58 | 194.80 | 177.25 | 211.04 |
T=45;S=2; | - | 946.19 | 31.35 | 10.06 | 180.60 | 182.13 | 184.05 |
T=50;S=4; | - | 3810.19 | 23.29 | 9.68 | 160.34 | 142.00 | 130.60 |
T=50;S=3; | - | 4411.66 | 39.18 | 14.79 | 149.26 | 128.57 | 147.92 |
T=50;S=2; | - | 6273.47 | 71.00 | 19.41 | 146.46 | 124.79 | 147.17 |
T=55;S=4; | - | 14704.68 | 64.87 | 14.13 | 172.13 | 162.80 | 168.13 |
T=55;S=3; | - | 17253.20 | 84.41 | 30.32 | 163.70 | 164.13 | 163.31 |
T=55;S=2; | - | 23839.38 | 239.74 | 49.88 | 158.11 | 178.72 | 172.18 |
Conditions (T, L, S) | 6-stage Method ($) | GA-Roulette Wheel ($) | GA-Tournament ($) | GA-Random ($) |
T=50;S=4; | 430.93 | 425.82 | 426.32 | 426.94 |
T=50;S=3; | 432.92 | 429.96 | 421.54 | 422.15 |
T=50;S=2; | 437.60 | 436.14 | 427.98 | 423.56 |
T=55;S=4; | 436.84 | 438.62 | 429.32 | 430.26 |
T=55;S=3; | 442.84 | 442.49 | 436.26 | 433.66 |
T=55;S=2; | 445.07 | 439.20 | 443.98 | 440.99 |
T=60;S=4; | 442.36 | 438.03 | 441.41 | 444.65 |
T=60;S=3; | 447.21 | 440.00 | 436.47 | 444.08 |
T=60;S=2; | 452.45 | 449.31 | 449.03 | 448.02 |
T=65;S=4; | 446.70 | 446.36 | 446.56 | 440.53 |
T=65;S=3; | 451.55 | 449.16 | 451.34 | 450.10 |
T=65;S=2; | 456.79 | 450.53 | 449.03 | 447.76 |
T=70;S=4; | 453.23 | 447.34 | 443.15 | 451.60 |
T=70;S=3; | 453.79 | 448.39 | 450.38 | 453.16 |
T=70;S=2; | 459.30 | 448.72 | 456.29 | 450.92 |
T=75;S=4; | 454.83 | 450.42 | 450.39 | 455.13 |
T=75;S=3; | 456.88 | 447.96 | 451.87 | 443.83 |
T=75;S=2; | 461.11 | 461.54 | 453.54 | 450.14 |
T=80;S=4; | 455.93 | 446.26 | 443.80 | 453.12 |
T=80;S=3; | 461.12 | 456.58 | 447.33 | 448.42 |
T=80;S=2; | 464.04 | 453.66 | 460.24 | 449.64 |
T=85;S=4; | 456.66 | 449.92 | 448.51 | 455.99 |
T=85;S=3; | 462.00 | 459.30 | 459.91 | 451.51 |
T=85;S=2; | 465.04 | 460.63 | 452.55 | 454.77 |
Conditions (T, L, S) | 6-stage Method ($) | GA-Roulette Wheel ($) | GA-Tournament ($) | GA-Random ($) |
T=50;S=4; | 430.93 | 425.82 | 426.32 | 426.94 |
T=50;S=3; | 432.92 | 429.96 | 421.54 | 422.15 |
T=50;S=2; | 437.60 | 436.14 | 427.98 | 423.56 |
T=55;S=4; | 436.84 | 438.62 | 429.32 | 430.26 |
T=55;S=3; | 442.84 | 442.49 | 436.26 | 433.66 |
T=55;S=2; | 445.07 | 439.20 | 443.98 | 440.99 |
T=60;S=4; | 442.36 | 438.03 | 441.41 | 444.65 |
T=60;S=3; | 447.21 | 440.00 | 436.47 | 444.08 |
T=60;S=2; | 452.45 | 449.31 | 449.03 | 448.02 |
T=65;S=4; | 446.70 | 446.36 | 446.56 | 440.53 |
T=65;S=3; | 451.55 | 449.16 | 451.34 | 450.10 |
T=65;S=2; | 456.79 | 450.53 | 449.03 | 447.76 |
T=70;S=4; | 453.23 | 447.34 | 443.15 | 451.60 |
T=70;S=3; | 453.79 | 448.39 | 450.38 | 453.16 |
T=70;S=2; | 459.30 | 448.72 | 456.29 | 450.92 |
T=75;S=4; | 454.83 | 450.42 | 450.39 | 455.13 |
T=75;S=3; | 456.88 | 447.96 | 451.87 | 443.83 |
T=75;S=2; | 461.11 | 461.54 | 453.54 | 450.14 |
T=80;S=4; | 455.93 | 446.26 | 443.80 | 453.12 |
T=80;S=3; | 461.12 | 456.58 | 447.33 | 448.42 |
T=80;S=2; | 464.04 | 453.66 | 460.24 | 449.64 |
T=85;S=4; | 456.66 | 449.92 | 448.51 | 455.99 |
T=85;S=3; | 462.00 | 459.30 | 459.91 | 451.51 |
T=85;S=2; | 465.04 | 460.63 | 452.55 | 454.77 |
Conditions (T, L, S) | 6-stage Method (s) | GA-Roulette Wheel (s) | GA-Tournament (s) | GA-Random (s) |
T=50;S=4; | 5.66 | 160.34 | 142.00 | 130.60 |
T=50;S=3; | 3.49 | 149.26 | 128.57 | 147.92 |
T=50;S=2; | 4.43 | 146.46 | 124.79 | 147.17 |
T=55;S=4; | 9.60 | 172.13 | 162.80 | 168.13 |
T=55;S=3; | 5.13 | 163.70 | 164.13 | 163.31 |
T=55;S=2; | 6.49 | 158.11 | 178.72 | 172.18 |
T=60;S=4; | 5.51 | 184.39 | 219.30 | 212.04 |
T=60;S=3; | 5.97 | 200.68 | 190.23 | 203.26 |
T=60;S=2; | 4.93 | 192.55 | 196.28 | 199.34 |
T=65;S=4; | 13.83 | 224.00 | 253.94 | 246.07 |
T=65;S=3; | 14.60 | 217.75 | 217.02 | 225.30 |
T=65;S=2; | 14.16 | 211.35 | 214.32 | 211.38 |
T=70;S=4; | 16.32 | 283.38 | 274.18 | 273.71 |
T=70;S=3; | 18.70 | 246.01 | 258.15 | 257.03 |
T=70;S=2; | 18.78 | 238.08 | 237.44 | 276.35 |
T=75;S=4; | 18.17 | 273.58 | 280.91 | 304.42 |
T=75;S=3; | 21.14 | 284.10 | 289.44 | 301.87 |
T=75;S=2; | 24.02 | 306.91 | 293.79 | 281.39 |
T=80;S=4; | 22.20 | 349.83 | 333.17 | 338.17 |
T=80;S=3; | 24.50 | 338.76 | 331.27 | 336.95 |
T=80;S=2; | 34.04 | 355.38 | 344.48 | 342.70 |
T=85;S=4; | 32.86 | 382.19 | 363.28 | 438.18 |
T=85;S=3; | 31.13 | 413.49 | 386.06 | 378.90 |
T=85;S=2; | 38.55 | 410.78 | 386.99 | 407.43 |
Conditions (T, L, S) | 6-stage Method (s) | GA-Roulette Wheel (s) | GA-Tournament (s) | GA-Random (s) |
T=50;S=4; | 5.66 | 160.34 | 142.00 | 130.60 |
T=50;S=3; | 3.49 | 149.26 | 128.57 | 147.92 |
T=50;S=2; | 4.43 | 146.46 | 124.79 | 147.17 |
T=55;S=4; | 9.60 | 172.13 | 162.80 | 168.13 |
T=55;S=3; | 5.13 | 163.70 | 164.13 | 163.31 |
T=55;S=2; | 6.49 | 158.11 | 178.72 | 172.18 |
T=60;S=4; | 5.51 | 184.39 | 219.30 | 212.04 |
T=60;S=3; | 5.97 | 200.68 | 190.23 | 203.26 |
T=60;S=2; | 4.93 | 192.55 | 196.28 | 199.34 |
T=65;S=4; | 13.83 | 224.00 | 253.94 | 246.07 |
T=65;S=3; | 14.60 | 217.75 | 217.02 | 225.30 |
T=65;S=2; | 14.16 | 211.35 | 214.32 | 211.38 |
T=70;S=4; | 16.32 | 283.38 | 274.18 | 273.71 |
T=70;S=3; | 18.70 | 246.01 | 258.15 | 257.03 |
T=70;S=2; | 18.78 | 238.08 | 237.44 | 276.35 |
T=75;S=4; | 18.17 | 273.58 | 280.91 | 304.42 |
T=75;S=3; | 21.14 | 284.10 | 289.44 | 301.87 |
T=75;S=2; | 24.02 | 306.91 | 293.79 | 281.39 |
T=80;S=4; | 22.20 | 349.83 | 333.17 | 338.17 |
T=80;S=3; | 24.50 | 338.76 | 331.27 | 336.95 |
T=80;S=2; | 34.04 | 355.38 | 344.48 | 342.70 |
T=85;S=4; | 32.86 | 382.19 | 363.28 | 438.18 |
T=85;S=3; | 31.13 | 413.49 | 386.06 | 378.90 |
T=85;S=2; | 38.55 | 410.78 | 386.99 | 407.43 |
[1] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial and Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[2] |
Sun-Ho Choi, Hyowon Seo, Minha Yoo. A multi-stage SIR model for rumor spreading. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2351-2372. doi: 10.3934/dcdsb.2020124 |
[3] |
Rocio de la Torre, Amaia Lusa, Manuel Mateo, El-Houssaine Aghezzaf. Determining personnel promotion policies in HEI. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1835-1859. doi: 10.3934/jimo.2019031 |
[4] |
Songqiang Qiu, Zhongwen Chen. An adaptively regularized sequential quadratic programming method for equality constrained optimization. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2675-2701. doi: 10.3934/jimo.2019075 |
[5] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1145-1160. doi: 10.3934/jimo.2021013 |
[6] |
Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial and Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715 |
[7] |
Ming-Jong Yao, Tien-Cheng Hsu. An efficient search algorithm for obtaining the optimal replenishment strategies in multi-stage just-in-time supply chain systems. Journal of Industrial and Management Optimization, 2009, 5 (1) : 11-32. doi: 10.3934/jimo.2009.5.11 |
[8] |
Pengyu Yan, Shi Qiang Liu, Cheng-Hu Yang, Mahmoud Masoud. A comparative study on three graph-based constructive algorithms for multi-stage scheduling with blocking. Journal of Industrial and Management Optimization, 2019, 15 (1) : 221-233. doi: 10.3934/jimo.2018040 |
[9] |
Jinghuan Li, Yu Li, Shuhua Zhang. Optimal expansion timing decisions in multi-stage PPP projects involving dedicated asset and government subsidies. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2065-2086. doi: 10.3934/jimo.2019043 |
[10] |
Jinghuan Li, Shuhua Zhang, Yu Li. Modelling and computation of optimal multiple investment timing in multi-stage capacity expansion infrastructure projects. Journal of Industrial and Management Optimization, 2022, 18 (1) : 297-314. doi: 10.3934/jimo.2020154 |
[11] |
Jide Sun, Lili Wang. The interaction between BIM's promotion and interest game under information asymmetry. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1301-1319. doi: 10.3934/jimo.2015.11.1301 |
[12] |
Zhenbo Wang, Shu-Cherng Fang, David Y. Gao, Wenxun Xing. Global extremal conditions for multi-integer quadratic programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 213-225. doi: 10.3934/jimo.2008.4.213 |
[13] |
Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial and Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177 |
[14] |
Meiling Jin, Yufu Ning, Fengming Liu, Yan Wang, Chunhua Gao. Uncertain KOL selection with advertising videos circulation and KOL selection diversification in advertising promotion. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021219 |
[15] |
Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2191-2220. doi: 10.3934/jimo.2021062 |
[16] |
Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial and Management Optimization, 2014, 10 (2) : 543-556. doi: 10.3934/jimo.2014.10.543 |
[17] |
Harish Garg, Dimple Rani. Multi-criteria decision making method based on Bonferroni mean aggregation operators of complex intuitionistic fuzzy numbers. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2279-2306. doi: 10.3934/jimo.2020069 |
[18] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051 |
[19] |
Yuli Zhang, Lin Han, Xiaotian Zhuang. Distributionally robust front distribution center inventory optimization with uncertain multi-item orders. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1777-1795. doi: 10.3934/dcdss.2022006 |
[20] |
Xiaoling Sun, Xiaojin Zheng, Juan Sun. A Lagrangian dual and surrogate method for multi-dimensional quadratic knapsack problems. Journal of Industrial and Management Optimization, 2009, 5 (1) : 47-60. doi: 10.3934/jimo.2009.5.47 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]