# American Institute of Mathematical Sciences

June  2020, 13(6): 1773-1790. doi: 10.3934/dcdss.2020104

## A new iterative identification method for damping control of power system in multi-interference

 1 School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 2 Beijing Key Laboratory of Service Performance of Urban Rail Transit Vehicles, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 3 School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, 6845, Australia

* Corresponding author: Miao Yu

Received  August 2018 Revised  October 2018 Published  September 2019

Fund Project: The first author is supported by the Scholarship for Young University Teachers granted by China Scholarship Council (201709960017); National Natural Science Foundation of China (No.51407201); Research Funds for Beijing University of Civil Engineering and Architecture (No.X18121); The second author is supported by BUCEA Post Graduate Innovation Project (No.PG2012085)

In this paper, we consider the closed-loop model of a power system in a multi-interference environment. For a multi-interference power system, the closed-loop identification is a difficult task. Yet, the model identification error can degrade the effect of the damping control. This could lead to instability of the power grid. Thus, for the closed-loop identification, we propose an iterative online identification algorithm based on the recursive least squares method and the v-gap distance. The convergence of the algorithm is proved by using direct method. The proposed algorithm is applied to the New England system, for which the results obtained are compared with those obtained using the prediction error method and the Runge-Kutta method. From the simulation study being carried out on the IEEE 39-bus New England system, we observe that by using the iterative identification algorithm proposed in this paper, the output response time is reduced by about half when compared with those obtained by using the prediction error method and the Runge-Kutta method. Also, the number of oscillations in the output response is less. These clearly indicate that the algorithm proposed can effectively suppress low frequency oscillation. As for the amplitudes of the output responses produced by the three methods, they are basically the same.

Citation: Miao Yu, Haoyang Lu, Weipeng Shang. A new iterative identification method for damping control of power system in multi-interference. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1773-1790. doi: 10.3934/dcdss.2020104
##### References:
 [1] H. K. Abdulkhader, J. Jacob and A. T. Mathew, Fractional-order lead-lag compensator-based multi-band power system stabiliser design using a hybrid dynamic GA-PSO algorithm, IET Gener. Tran. and Distr., 12 (2018), 1515-1521. [2] P. Albertos and A. Sala, Iterative Identification and Control: Advances in Theory and Applications, Springer-Verlag, New York, 2002. [3] X. H. Bu and Z. S. Hou, Adaptive iterative learning control for linear systems with binary-valued observations, IEEE Trans. on Neur. Net. and Lear. Syst., 29 (2018), 232-237.  doi: 10.1109/TNNLS.2016.2616885. [4] X. M. Chen and G. R. Guo, The convergence analysis of the WCE iterative algorithm, J. Natl. Univ. of Def. Tech., 3 (1986), 16-25. [5] M. Darabian and A. Jalilvand, Designing a wide area damping controller to coordinate FACTS devices in the presence of wind turbines with regard to time delay, IET Rene. Power Gener., 12 (2018), 1523-1534.  doi: 10.1049/iet-rpg.2017.0602. [6] Z. L. Deng, X. H. Qin and M. B. Zhang, Frequency-domain analysis of robust monotonic convergence of norm-optimal iterative learning control, IEEE Trans. on Contr. Syst. Tech., 26 (2018), 637-651. [7] L. Q. Dou, Q. Zong, Z. S. Zhao and Y. H. Ji, Iterative identification and control design with optimal excitation signals based on v-gap, Sci. in China, 52 (2009), 1120-1128. [8] R. Goldoost-Soloot, Y. Mishra and G. Ledwich, Wide-area damping control for inter-area oscillations using inverse filtering technique, IET Gener. Tran. and Distr., 9 (2015), 1534-1543.  doi: 10.1049/iet-gtd.2015.0027. [9] Q. Guo, The Iterative Methods to Solve Systems of Nonlinear Equations, Ph.D thesis, Hefei University of Technology in Anhui Province, 2015. [10] Z. X. Liu, Y. Z. Sun, X. Li, B. Song, Z. S. Liu and F. M. Feng, Wide-area damping control system in China Southern Power Grid and its operation analysis, Auto. Electric. Power Syst., 38 (2014), 152–159 and 183. [11] K. Liu, Y. M. Zhang, X. Y. Li, R. Jiang and Q. Zeng, Design of VSC-HVDC bilateral fuzzy logic reactive power damping controller based on oscillation transient energy decrease, Power Syst. Tech., 40 (2016), 1030-1036. [12] W. C. Meng, X. Y. Wang, B. Fan, Q. M. Yang and I. Kamwa, Adaptive nonlinear neural control of wide-area power systems, IET Gener. Tran. and Distr., 11 (2017), 4531-4536. [13] D. H. Owens and K. Feng, Parameter optimization in iterative learning control, Int. J. Contr., 76 (2003), 1059-1069.  doi: 10.1080/0020717031000121410. [14] D. Rimorov, A. Heniche, I. Kamwa, S. Babaei, G. Stefopolous and B. Fardanesh, Dynamic performance improvement of New York state power grid with multi-functional multi-band power system stabiliser-based wide-area control, IET Gener. Tran. and Distr., 11 (2017), 4537-4545.  doi: 10.1049/iet-gtd.2017.0288. [15] X. Ruan, Z. Z. Bien and Q. Wang, Convergence characteristics of proportional-type iterative learning control in the sense of Lebesgue-p norm, IET Contr. Theory and Appl., 6 (2012), 707-714.  doi: 10.1049/iet-cta.2010.0388. [16] G. Sebastian, Y. Tan, D. Oetomo and I. Mareels, Feedback-based iterative learning design and synthesis with output constraints for robotic manipulators, IEEE Contr. Syst. Lett., 2 (2018), 513-518.  doi: 10.1109/LCSYS.2018.2842186. [17] Y. Shen, W. Yao, J. Y. Wen and H. B. He, Adaptive wide-area power oscillation damper design for photovoltaic plant considering delay compensation, IET Gener. Tran. and Distr., 11 (2017), 4511-4519.  doi: 10.1049/iet-gtd.2016.2057. [18] T. D. Son, G. Pipeleers and J. Swevers, Robust monotonic convergent iterative learning control, IEEE Trans. on Automat. Contr., 61 (2016), 1063-1068.  doi: 10.1109/TAC.2015.2457785. [19] F. Z. Song, Y. Liu, J. X. Xu, X. F. Yang, P. He and Z. L. Yang, Iterative learning identification and compensation of space-periodic disturbance in PMLSM systems with time delay, IEEE Trans. on Ind. Electron., 65 (2018), 7579-7589.  doi: 10.1109/TIE.2017.2777387. [20] C. Wu, Identification of Dominant Dynamic Characteristics of Power System Based on Ambient Signals, Ph.D thesis, Tsinghua University in Beijing, 2010. [21] C. Zhang and D. Shen, Zero-error convergence of iterative learning control based on uniform quantisation with encoding and decoding mechanism, IET Contr. Theory and Appl., 12 (2018), 1907-1915.  doi: 10.1049/iet-cta.2017.0919. [22] S. Zhu, X. J. Wang and H. Liu, Observer-based iterative and repetitive learning control for a class of nonlinear systems, IEEE/CAA J. Autom. Sinica, 5 (2018), 990-998.  doi: 10.1109/JAS.2017.7510463. [23] H. Zhang and M. Gou, Convergence analysis of compressive sensing based on SCAD iterative thresholding algorithm, Chinese J. Eng. Math., 33 (2016), 243-258.

show all references

##### References:
 [1] H. K. Abdulkhader, J. Jacob and A. T. Mathew, Fractional-order lead-lag compensator-based multi-band power system stabiliser design using a hybrid dynamic GA-PSO algorithm, IET Gener. Tran. and Distr., 12 (2018), 1515-1521. [2] P. Albertos and A. Sala, Iterative Identification and Control: Advances in Theory and Applications, Springer-Verlag, New York, 2002. [3] X. H. Bu and Z. S. Hou, Adaptive iterative learning control for linear systems with binary-valued observations, IEEE Trans. on Neur. Net. and Lear. Syst., 29 (2018), 232-237.  doi: 10.1109/TNNLS.2016.2616885. [4] X. M. Chen and G. R. Guo, The convergence analysis of the WCE iterative algorithm, J. Natl. Univ. of Def. Tech., 3 (1986), 16-25. [5] M. Darabian and A. Jalilvand, Designing a wide area damping controller to coordinate FACTS devices in the presence of wind turbines with regard to time delay, IET Rene. Power Gener., 12 (2018), 1523-1534.  doi: 10.1049/iet-rpg.2017.0602. [6] Z. L. Deng, X. H. Qin and M. B. Zhang, Frequency-domain analysis of robust monotonic convergence of norm-optimal iterative learning control, IEEE Trans. on Contr. Syst. Tech., 26 (2018), 637-651. [7] L. Q. Dou, Q. Zong, Z. S. Zhao and Y. H. Ji, Iterative identification and control design with optimal excitation signals based on v-gap, Sci. in China, 52 (2009), 1120-1128. [8] R. Goldoost-Soloot, Y. Mishra and G. Ledwich, Wide-area damping control for inter-area oscillations using inverse filtering technique, IET Gener. Tran. and Distr., 9 (2015), 1534-1543.  doi: 10.1049/iet-gtd.2015.0027. [9] Q. Guo, The Iterative Methods to Solve Systems of Nonlinear Equations, Ph.D thesis, Hefei University of Technology in Anhui Province, 2015. [10] Z. X. Liu, Y. Z. Sun, X. Li, B. Song, Z. S. Liu and F. M. Feng, Wide-area damping control system in China Southern Power Grid and its operation analysis, Auto. Electric. Power Syst., 38 (2014), 152–159 and 183. [11] K. Liu, Y. M. Zhang, X. Y. Li, R. Jiang and Q. Zeng, Design of VSC-HVDC bilateral fuzzy logic reactive power damping controller based on oscillation transient energy decrease, Power Syst. Tech., 40 (2016), 1030-1036. [12] W. C. Meng, X. Y. Wang, B. Fan, Q. M. Yang and I. Kamwa, Adaptive nonlinear neural control of wide-area power systems, IET Gener. Tran. and Distr., 11 (2017), 4531-4536. [13] D. H. Owens and K. Feng, Parameter optimization in iterative learning control, Int. J. Contr., 76 (2003), 1059-1069.  doi: 10.1080/0020717031000121410. [14] D. Rimorov, A. Heniche, I. Kamwa, S. Babaei, G. Stefopolous and B. Fardanesh, Dynamic performance improvement of New York state power grid with multi-functional multi-band power system stabiliser-based wide-area control, IET Gener. Tran. and Distr., 11 (2017), 4537-4545.  doi: 10.1049/iet-gtd.2017.0288. [15] X. Ruan, Z. Z. Bien and Q. Wang, Convergence characteristics of proportional-type iterative learning control in the sense of Lebesgue-p norm, IET Contr. Theory and Appl., 6 (2012), 707-714.  doi: 10.1049/iet-cta.2010.0388. [16] G. Sebastian, Y. Tan, D. Oetomo and I. Mareels, Feedback-based iterative learning design and synthesis with output constraints for robotic manipulators, IEEE Contr. Syst. Lett., 2 (2018), 513-518.  doi: 10.1109/LCSYS.2018.2842186. [17] Y. Shen, W. Yao, J. Y. Wen and H. B. He, Adaptive wide-area power oscillation damper design for photovoltaic plant considering delay compensation, IET Gener. Tran. and Distr., 11 (2017), 4511-4519.  doi: 10.1049/iet-gtd.2016.2057. [18] T. D. Son, G. Pipeleers and J. Swevers, Robust monotonic convergent iterative learning control, IEEE Trans. on Automat. Contr., 61 (2016), 1063-1068.  doi: 10.1109/TAC.2015.2457785. [19] F. Z. Song, Y. Liu, J. X. Xu, X. F. Yang, P. He and Z. L. Yang, Iterative learning identification and compensation of space-periodic disturbance in PMLSM systems with time delay, IEEE Trans. on Ind. Electron., 65 (2018), 7579-7589.  doi: 10.1109/TIE.2017.2777387. [20] C. Wu, Identification of Dominant Dynamic Characteristics of Power System Based on Ambient Signals, Ph.D thesis, Tsinghua University in Beijing, 2010. [21] C. Zhang and D. Shen, Zero-error convergence of iterative learning control based on uniform quantisation with encoding and decoding mechanism, IET Contr. Theory and Appl., 12 (2018), 1907-1915.  doi: 10.1049/iet-cta.2017.0919. [22] S. Zhu, X. J. Wang and H. Liu, Observer-based iterative and repetitive learning control for a class of nonlinear systems, IEEE/CAA J. Autom. Sinica, 5 (2018), 990-998.  doi: 10.1109/JAS.2017.7510463. [23] H. Zhang and M. Gou, Convergence analysis of compressive sensing based on SCAD iterative thresholding algorithm, Chinese J. Eng. Math., 33 (2016), 243-258.
Closed-loop Power System Model
Closed-loop Power System Identification Model
The flow chart of iterative identification algorithm based on RLS and $v$-gap
IEEE 39-bus New England test system
The optimal parameters of the New England system being identified by the RLS parameter estimation
The Bode diagrams of the identified model and the initial model for New England system
Comparison of output responses for New England system
The $v$-gap distance between $G$ and $B_i$ for New England system
The output responses obtained by different identification methods for New England system
 Runge-Kutta Iterative identification Prediction Error Time/s 70 29 39 Amplitude/dB 0.912 0.984 0.883
 Runge-Kutta Iterative identification Prediction Error Time/s 70 29 39 Amplitude/dB 0.912 0.984 0.883
The frequency stability margin and the $v$-gap distance corresponding to each identified data for New England system
 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 The frequency stability margin 0.0447 0.0269 0.0325 0.0622 0.1272 0.1257 v-gap distance 0.5899 0.5660 0.4151 0.1462 0.1099 0.1048 Group 7 Group 8 Group 9 Group 10 Group 11 Group 12 The frequency stability margin 0.1258 0.1178 0.1177 0.1191 0.1193 0.1192 v-gap distance 0.1041 0.0645 0.0589 0.0590 0.0610 0.0645
 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 The frequency stability margin 0.0447 0.0269 0.0325 0.0622 0.1272 0.1257 v-gap distance 0.5899 0.5660 0.4151 0.1462 0.1099 0.1048 Group 7 Group 8 Group 9 Group 10 Group 11 Group 12 The frequency stability margin 0.1258 0.1178 0.1177 0.1191 0.1193 0.1192 v-gap distance 0.1041 0.0645 0.0589 0.0590 0.0610 0.0645
 [1] Yan Tang. Convergence analysis of a new iterative algorithm for solving split variational inclusion problems. Journal of Industrial and Management Optimization, 2020, 16 (2) : 945-964. doi: 10.3934/jimo.2018187 [2] J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control and Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 [3] Quyen Tran, Harbir Antil, Hugo Díaz. Optimal control of parameterized stationary Maxwell's system: Reduced basis, convergence analysis, and a posteriori error estimates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022003 [4] Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887 [5] Zhong-Qiang Wu, Xi-Bo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1565-1577. doi: 10.3934/jimo.2018021 [6] Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193 [7] Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023 [8] Guoyong Gu, Junfeng Yang. A unified and tight linear convergence analysis of the relaxed proximal point algorithm. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022107 [9] Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109 [10] Hyukjin Lee, Cheng-Chew Lim, Jinho Choi. Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1083-1099. doi: 10.3934/dcdsb.2011.16.1083 [11] Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial and Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175 [12] Qi Yang, Lei Wang, Enmin Feng, Hongchao Yin, Zhilong Xiu. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture. Journal of Industrial and Management Optimization, 2020, 16 (2) : 579-599. doi: 10.3934/jimo.2018168 [13] Henk Broer, Henk Dijkstra, Carles Simó, Alef Sterk, Renato Vitolo. The dynamics of a low-order model for the Atlantic multidecadal oscillation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 73-107. doi: 10.3934/dcdsb.2011.16.73 [14] Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322 [15] M. Predescu, R. Levins, T. Awerbuch-Friedlander. Analysis of a nonlinear system for community intervention in mosquito control. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 605-622. doi: 10.3934/dcdsb.2006.6.605 [16] Simai He, Min Li, Shuzhong Zhang, Zhi-Quan Luo. A nonconvergent example for the iterative water-filling algorithm. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 147-150. doi: 10.3934/naco.2011.1.147 [17] Fabián Crocce, Ernesto Mordecki. A non-iterative algorithm for generalized pig games. Journal of Dynamics and Games, 2018, 5 (4) : 331-341. doi: 10.3934/jdg.2018020 [18] Lingling Lv, Zhe Zhang, Lei Zhang, Weishu Wang. An iterative algorithm for periodic sylvester matrix equations. Journal of Industrial and Management Optimization, 2018, 14 (1) : 413-425. doi: 10.3934/jimo.2017053 [19] Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883 [20] Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3223-3231. doi: 10.3934/dcdss.2020336

2021 Impact Factor: 1.865

## Metrics

• PDF downloads (167)
• HTML views (309)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]