December  2020, 13(12): 3305-3317. doi: 10.3934/dcdss.2020111

Fractional Ostrowski-Sugeno Fuzzy univariate inequalities

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

Received  August 2018 Revised  December 2018 Published  December 2020 Early access  October 2019

Here we present fractional univariate Ostrowski-Sugeno Fuzzy type inequalities. These are of Ostrowski-like inequalities in the setting of Sugeno fuzzy integral and its special-particular properties. In a fractional environment, they give tight upper bounds to the deviation of a function from its Sugeno-fuzzy averages. The fractional derivatives we use are of Canavati and Caputo types. This work is greatly inspired by [8], [1] and [2].

Citation: George A. Anastassiou. Fractional Ostrowski-Sugeno Fuzzy univariate inequalities. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3305-3317. doi: 10.3934/dcdss.2020111
References:
[1]

G. A. Anastassiou, Fractional Differentiation Inequalities, Springer, Dordrecht, 2009. doi: 10.1007/978-0-387-98128-4.  Google Scholar

[2]

G. A. Anastassiou, Advances on Fractional Inequalities, SpringerBriefs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4614-0703-4.  Google Scholar

[3]

G. A. Anastassiou, Intelligent Mathematics: Computational Analysis, Intelligent Systems Reference Library, 5. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-17098-0.  Google Scholar

[4]

G. A. Anastassiou, Intelligent Comparisons: Analytic Inequalities, Studies in Computational Intelligence, 609. Springer, Cham, 2016. doi: 10.1007/978-3-319-21121-3.  Google Scholar

[5]

M. Boczek and M. Kaluszka, On the Minkowaki-Hölder type inequalities for generalized Sugeno integrals with an application, Kybernetika (Prague), 52 (2016), 329-347.  doi: 10.14736/kyb-2016-3-0329.  Google Scholar

[6]

J. A. Canavati, The Riemann-Liouville integral, Nieuw Arch. Wisk., 5 (1987), 53-75.   Google Scholar

[7]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[8]

A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, (German) Comment. Math. Helv., 10 (1938), 226-227.  doi: 10.1007/BF01214290.  Google Scholar

[9]

E. Pap, Null-Additive Set functions, Mathematics and its Applications, 337, Kluwer Academic Publishers Group, Dordrecht; Ister Science, Bratislava, 1995.  Google Scholar

[10]

D. Ralescu and G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75 (1980), 562-570.  doi: 10.1016/0022-247X(80)90101-8.  Google Scholar

[11]

M. Sugeno, Theory of Fuzzy Integrals and Its Applications[J], PhD thesis, Tokyo Institute of Technology, 1974. Google Scholar

[12] Z. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.  doi: 10.1007/978-1-4757-5303-5.  Google Scholar

show all references

References:
[1]

G. A. Anastassiou, Fractional Differentiation Inequalities, Springer, Dordrecht, 2009. doi: 10.1007/978-0-387-98128-4.  Google Scholar

[2]

G. A. Anastassiou, Advances on Fractional Inequalities, SpringerBriefs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4614-0703-4.  Google Scholar

[3]

G. A. Anastassiou, Intelligent Mathematics: Computational Analysis, Intelligent Systems Reference Library, 5. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-17098-0.  Google Scholar

[4]

G. A. Anastassiou, Intelligent Comparisons: Analytic Inequalities, Studies in Computational Intelligence, 609. Springer, Cham, 2016. doi: 10.1007/978-3-319-21121-3.  Google Scholar

[5]

M. Boczek and M. Kaluszka, On the Minkowaki-Hölder type inequalities for generalized Sugeno integrals with an application, Kybernetika (Prague), 52 (2016), 329-347.  doi: 10.14736/kyb-2016-3-0329.  Google Scholar

[6]

J. A. Canavati, The Riemann-Liouville integral, Nieuw Arch. Wisk., 5 (1987), 53-75.   Google Scholar

[7]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[8]

A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, (German) Comment. Math. Helv., 10 (1938), 226-227.  doi: 10.1007/BF01214290.  Google Scholar

[9]

E. Pap, Null-Additive Set functions, Mathematics and its Applications, 337, Kluwer Academic Publishers Group, Dordrecht; Ister Science, Bratislava, 1995.  Google Scholar

[10]

D. Ralescu and G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75 (1980), 562-570.  doi: 10.1016/0022-247X(80)90101-8.  Google Scholar

[11]

M. Sugeno, Theory of Fuzzy Integrals and Its Applications[J], PhD thesis, Tokyo Institute of Technology, 1974. Google Scholar

[12] Z. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.  doi: 10.1007/978-1-4757-5303-5.  Google Scholar
[1]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432

[3]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[4]

Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial & Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581

[5]

Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013

[6]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[7]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[8]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021, 8 (3) : 267-275. doi: 10.3934/jdg.2021010

[9]

Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008

[10]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[11]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[12]

Wei Wang, Xiao-Long Xin. On fuzzy filters of Heyting-algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1611-1619. doi: 10.3934/dcdss.2011.4.1611

[13]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[14]

Jin-Zi Yang, Yuan-Xin Li, Ming Wei. Fuzzy adaptive asymptotic tracking of fractional order nonlinear systems with uncertain disturbances. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021144

[15]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[16]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158

[17]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial & Management Optimization, 2020, 16 (1) : 371-386. doi: 10.3934/jimo.2018157

[18]

Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$-means. Big Data & Information Analytics, 2016, 1 (2&3) : 247-259. doi: 10.3934/bdia.2016007

[19]

Jian Luo, Xueqi Yang, Ye Tian, Wenwen Yu. Corporate and personal credit scoring via fuzzy non-kernel SVM with fuzzy within-class scatter. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2743-2756. doi: 10.3934/jimo.2019078

[20]

Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021011

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (238)
  • HTML views (407)
  • Cited by (0)

Other articles
by authors

[Back to Top]