-
Previous Article
A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs
- DCDS-S Home
- This Issue
-
Next Article
The inverse volatility problem for American options
A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators
Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino Carlo Bo, Piazza della Repubblica, 13 - 61029 Urbino (PU), Italy |
We prove a cone-type criterion for a boundary point to be regular for the Dirichlet problem related to (possibly) degenerate Ornstein–Uhlenbeck operators in $ \mathbb{R}^N $. Our result extends the classical Zaremba cone criterion for the Laplace operator.
References:
[1] |
K. Beauchard and K. Pravda-Starov,
Null-controllability of non-autonomous Ornstein–Uhlenbeck equations, J. Math. Anal. Appl., 456 (2017), 496-524.
doi: 10.1016/j.jmaa.2017.07.014. |
[2] |
J.-M. Bony,
Principe du maximum, inégalité de Harnack et unicité du problèeme de Cauchy pour les opérateurs elliptiques dégénérés, (French)Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304.
doi: 10.5802/aif.319. |
[3] |
M. Bramanti, G. Cupini, E. Lanconelli and E. Priola,
Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z., 266 (2010), 789-816.
doi: 10.1007/s00209-009-0599-3. |
[4] |
M. Bramanti, G. Cupini, E. Lanconelli and E. Priola,
Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients, Math. Nachr., 286 (2013), 1087-1101.
doi: 10.1002/mana.201200189. |
[5] |
C. Cinti and E. Lanconelli,
Riesz and Poisson-Jensen representation formulas for a class of ultraparabolic operators on Lie groups, Potential Anal., 30 (2009), 179-200.
doi: 10.1007/s11118-008-9112-6. |
[6] |
B. Farkas and A. Lunardi, Maximal regularity for Kolmogorov operators in $L^2$ spaces with respect to invariant measures, J. Math. Pures Appl. (9), 86 (2006), 310–321.
doi: 10.1016/j.matpur.2006.06.002. |
[7] |
S. Fornaro and A. Rhandi,
On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$-spaces, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 5049-5058.
doi: 10.3934/dcds.2013.33.5049. |
[8] |
G. R. Goldstein, J. A. Goldstein and A. Rhandi,
Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential., Appl. Anal., 91 (2012), 2057-2071.
doi: 10.1080/00036811.2011.587809. |
[9] |
A. E. Kogoj,
On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion, J. Differential Equations, 262 (2017), 1524-1539.
doi: 10.1016/j.jde.2016.10.018. |
[10] |
A. E. Kogoj and S. Polidoro,
Harnack inequality for hypoelliptic second order partial differential operators, Potential Anal., 45 (2016), 545-555.
doi: 10.1007/s11118-016-9557-y. |
[11] |
E. Lanconelli and S. Polidoro,
On a class of hypoelliptic evolution operators, Partial differential equations, Ⅱ (Turin, 1993), Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63.
|
[12] |
P. Negrini, Punti regolari per aperti cilindrici in uno spazio $\beta $-armonico, (Italian) Boll. Un.
Mat. Ital. B (6), 2 (1983), 537–547. |
[13] |
S. Zaremba,
Sur le Principe de Dirichlet, (French) Acta Math., 34 (1911), 293-316.
doi: 10.1007/BF02393130. |
show all references
References:
[1] |
K. Beauchard and K. Pravda-Starov,
Null-controllability of non-autonomous Ornstein–Uhlenbeck equations, J. Math. Anal. Appl., 456 (2017), 496-524.
doi: 10.1016/j.jmaa.2017.07.014. |
[2] |
J.-M. Bony,
Principe du maximum, inégalité de Harnack et unicité du problèeme de Cauchy pour les opérateurs elliptiques dégénérés, (French)Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304.
doi: 10.5802/aif.319. |
[3] |
M. Bramanti, G. Cupini, E. Lanconelli and E. Priola,
Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z., 266 (2010), 789-816.
doi: 10.1007/s00209-009-0599-3. |
[4] |
M. Bramanti, G. Cupini, E. Lanconelli and E. Priola,
Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients, Math. Nachr., 286 (2013), 1087-1101.
doi: 10.1002/mana.201200189. |
[5] |
C. Cinti and E. Lanconelli,
Riesz and Poisson-Jensen representation formulas for a class of ultraparabolic operators on Lie groups, Potential Anal., 30 (2009), 179-200.
doi: 10.1007/s11118-008-9112-6. |
[6] |
B. Farkas and A. Lunardi, Maximal regularity for Kolmogorov operators in $L^2$ spaces with respect to invariant measures, J. Math. Pures Appl. (9), 86 (2006), 310–321.
doi: 10.1016/j.matpur.2006.06.002. |
[7] |
S. Fornaro and A. Rhandi,
On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$-spaces, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 5049-5058.
doi: 10.3934/dcds.2013.33.5049. |
[8] |
G. R. Goldstein, J. A. Goldstein and A. Rhandi,
Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential., Appl. Anal., 91 (2012), 2057-2071.
doi: 10.1080/00036811.2011.587809. |
[9] |
A. E. Kogoj,
On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion, J. Differential Equations, 262 (2017), 1524-1539.
doi: 10.1016/j.jde.2016.10.018. |
[10] |
A. E. Kogoj and S. Polidoro,
Harnack inequality for hypoelliptic second order partial differential operators, Potential Anal., 45 (2016), 545-555.
doi: 10.1007/s11118-016-9557-y. |
[11] |
E. Lanconelli and S. Polidoro,
On a class of hypoelliptic evolution operators, Partial differential equations, Ⅱ (Turin, 1993), Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63.
|
[12] |
P. Negrini, Punti regolari per aperti cilindrici in uno spazio $\beta $-armonico, (Italian) Boll. Un.
Mat. Ital. B (6), 2 (1983), 537–547. |
[13] |
S. Zaremba,
Sur le Principe de Dirichlet, (French) Acta Math., 34 (1911), 293-316.
doi: 10.1007/BF02393130. |
[1] |
Alessia E. Kogoj, Ermanno Lanconelli, Giulio Tralli. Wiener-Landis criterion for Kolmogorov-type operators. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2467-2485. doi: 10.3934/dcds.2018102 |
[2] |
Antonio Avantaggiati, Paola Loreti. Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators (II). Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 525-545. doi: 10.3934/dcdss.2009.2.525 |
[3] |
Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649 |
[4] |
Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110-121. doi: 10.3934/proc.2007.2007.110 |
[5] |
Bálint Farkas, Luca Lorenzi. On a class of hypoelliptic operators with unbounded coefficients in $R^N$. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1159-1201. doi: 10.3934/cpaa.2009.8.1159 |
[6] |
Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871 |
[7] |
Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295 |
[8] |
Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142 |
[9] |
Guangcun Lu. Parameterized splitting theorems and bifurcations for potential operators, Part I: Abstract theory. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1243-1316. doi: 10.3934/dcds.2021154 |
[10] |
Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181 |
[11] |
Samuel Herrmann, Nicolas Massin. Exit problem for Ornstein-Uhlenbeck processes: A random walk approach. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3199-3215. doi: 10.3934/dcdsb.2020058 |
[12] |
Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651 |
[13] |
Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139 |
[14] |
Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457 |
[15] |
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569 |
[16] |
Delio Mugnolo, Abdelaziz Rhandi. Ornstein–Uhlenbeck semigroups on star graphs. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022030 |
[17] |
Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control and Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31 |
[18] |
Pierre Patie, Aditya Vaidyanathan. A spectral theoretical approach for hypocoercivity applied to some degenerate hypoelliptic, and non-local operators. Kinetic and Related Models, 2020, 13 (3) : 479-506. doi: 10.3934/krm.2020016 |
[19] |
Jiu Ding, Noah H. Rhee. A unified maximum entropy method via spline functions for Frobenius-Perron operators. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 235-245. doi: 10.3934/naco.2013.3.235 |
[20] |
Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]