December  2020, 13(12): 3491-3494. doi: 10.3934/dcdss.2020112

A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators

Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino Carlo Bo, Piazza della Repubblica, 13 - 61029 Urbino (PU), Italy

Dedicated to Gisèle Ruiz Goldstein on the occasion of her 60th birthday

Received  January 2019 Revised  March 2019 Published  December 2020 Early access  October 2019

We prove a cone-type criterion for a boundary point to be regular for the Dirichlet problem related to (possibly) degenerate Ornstein–Uhlenbeck operators in $ \mathbb{R}^N $. Our result extends the classical Zaremba cone criterion for the Laplace operator.

Citation: Alessia E. Kogoj. A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3491-3494. doi: 10.3934/dcdss.2020112
References:
[1]

K. Beauchard and K. Pravda-Starov, Null-controllability of non-autonomous Ornstein–Uhlenbeck equations, J. Math. Anal. Appl., 456 (2017), 496-524.  doi: 10.1016/j.jmaa.2017.07.014.  Google Scholar

[2]

J.-M. Bony, Principe du maximum, inégalité de Harnack et unicité du problèeme de Cauchy pour les opérateurs elliptiques dégénérés, (French)Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304.  doi: 10.5802/aif.319.  Google Scholar

[3]

M. BramantiG. CupiniE. Lanconelli and E. Priola, Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z., 266 (2010), 789-816.  doi: 10.1007/s00209-009-0599-3.  Google Scholar

[4]

M. BramantiG. CupiniE. Lanconelli and E. Priola, Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients, Math. Nachr., 286 (2013), 1087-1101.  doi: 10.1002/mana.201200189.  Google Scholar

[5]

C. Cinti and E. Lanconelli, Riesz and Poisson-Jensen representation formulas for a class of ultraparabolic operators on Lie groups, Potential Anal., 30 (2009), 179-200.  doi: 10.1007/s11118-008-9112-6.  Google Scholar

[6]

B. Farkas and A. Lunardi, Maximal regularity for Kolmogorov operators in $L^2$ spaces with respect to invariant measures, J. Math. Pures Appl. (9), 86 (2006), 310–321. doi: 10.1016/j.matpur.2006.06.002.  Google Scholar

[7]

S. Fornaro and A. Rhandi, On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$-spaces, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 5049-5058.  doi: 10.3934/dcds.2013.33.5049.  Google Scholar

[8]

G. R. GoldsteinJ. A. Goldstein and A. Rhandi, Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential., Appl. Anal., 91 (2012), 2057-2071.  doi: 10.1080/00036811.2011.587809.  Google Scholar

[9]

A. E. Kogoj, On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion, J. Differential Equations, 262 (2017), 1524-1539.  doi: 10.1016/j.jde.2016.10.018.  Google Scholar

[10]

A. E. Kogoj and S. Polidoro, Harnack inequality for hypoelliptic second order partial differential operators, Potential Anal., 45 (2016), 545-555.  doi: 10.1007/s11118-016-9557-y.  Google Scholar

[11]

E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Partial differential equations, Ⅱ (Turin, 1993), Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63.   Google Scholar

[12]

P. Negrini, Punti regolari per aperti cilindrici in uno spazio $\beta $-armonico, (Italian) Boll. Un. Mat. Ital. B (6), 2 (1983), 537–547.  Google Scholar

[13]

S. Zaremba, Sur le Principe de Dirichlet, (French) Acta Math., 34 (1911), 293-316.  doi: 10.1007/BF02393130.  Google Scholar

show all references

References:
[1]

K. Beauchard and K. Pravda-Starov, Null-controllability of non-autonomous Ornstein–Uhlenbeck equations, J. Math. Anal. Appl., 456 (2017), 496-524.  doi: 10.1016/j.jmaa.2017.07.014.  Google Scholar

[2]

J.-M. Bony, Principe du maximum, inégalité de Harnack et unicité du problèeme de Cauchy pour les opérateurs elliptiques dégénérés, (French)Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304.  doi: 10.5802/aif.319.  Google Scholar

[3]

M. BramantiG. CupiniE. Lanconelli and E. Priola, Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z., 266 (2010), 789-816.  doi: 10.1007/s00209-009-0599-3.  Google Scholar

[4]

M. BramantiG. CupiniE. Lanconelli and E. Priola, Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients, Math. Nachr., 286 (2013), 1087-1101.  doi: 10.1002/mana.201200189.  Google Scholar

[5]

C. Cinti and E. Lanconelli, Riesz and Poisson-Jensen representation formulas for a class of ultraparabolic operators on Lie groups, Potential Anal., 30 (2009), 179-200.  doi: 10.1007/s11118-008-9112-6.  Google Scholar

[6]

B. Farkas and A. Lunardi, Maximal regularity for Kolmogorov operators in $L^2$ spaces with respect to invariant measures, J. Math. Pures Appl. (9), 86 (2006), 310–321. doi: 10.1016/j.matpur.2006.06.002.  Google Scholar

[7]

S. Fornaro and A. Rhandi, On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$-spaces, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 5049-5058.  doi: 10.3934/dcds.2013.33.5049.  Google Scholar

[8]

G. R. GoldsteinJ. A. Goldstein and A. Rhandi, Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential., Appl. Anal., 91 (2012), 2057-2071.  doi: 10.1080/00036811.2011.587809.  Google Scholar

[9]

A. E. Kogoj, On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion, J. Differential Equations, 262 (2017), 1524-1539.  doi: 10.1016/j.jde.2016.10.018.  Google Scholar

[10]

A. E. Kogoj and S. Polidoro, Harnack inequality for hypoelliptic second order partial differential operators, Potential Anal., 45 (2016), 545-555.  doi: 10.1007/s11118-016-9557-y.  Google Scholar

[11]

E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Partial differential equations, Ⅱ (Turin, 1993), Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63.   Google Scholar

[12]

P. Negrini, Punti regolari per aperti cilindrici in uno spazio $\beta $-armonico, (Italian) Boll. Un. Mat. Ital. B (6), 2 (1983), 537–547.  Google Scholar

[13]

S. Zaremba, Sur le Principe de Dirichlet, (French) Acta Math., 34 (1911), 293-316.  doi: 10.1007/BF02393130.  Google Scholar

[1]

Alessia E. Kogoj, Ermanno Lanconelli, Giulio Tralli. Wiener-Landis criterion for Kolmogorov-type operators. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2467-2485. doi: 10.3934/dcds.2018102

[2]

Antonio Avantaggiati, Paola Loreti. Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators (II). Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 525-545. doi: 10.3934/dcdss.2009.2.525

[3]

Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649

[4]

Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110-121. doi: 10.3934/proc.2007.2007.110

[5]

Bálint Farkas, Luca Lorenzi. On a class of hypoelliptic operators with unbounded coefficients in $R^N$. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1159-1201. doi: 10.3934/cpaa.2009.8.1159

[6]

Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871

[7]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[8]

Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142

[9]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

[10]

Samuel Herrmann, Nicolas Massin. Exit problem for Ornstein-Uhlenbeck processes: A random walk approach. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3199-3215. doi: 10.3934/dcdsb.2020058

[11]

Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651

[12]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[13]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[14]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[15]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[16]

Pierre Patie, Aditya Vaidyanathan. A spectral theoretical approach for hypocoercivity applied to some degenerate hypoelliptic, and non-local operators. Kinetic & Related Models, 2020, 13 (3) : 479-506. doi: 10.3934/krm.2020016

[17]

Jiu Ding, Noah H. Rhee. A unified maximum entropy method via spline functions for Frobenius-Perron operators. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 235-245. doi: 10.3934/naco.2013.3.235

[18]

Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451

[19]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[20]

Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (153)
  • HTML views (409)
  • Cited by (0)

Other articles
by authors

[Back to Top]