For the nonlinear Schrödinger (NLS) equation with fourth-order dispersion and dual power law nonlinearity, by using the method of dynamical systems, we investigate the bifurcations and exact traveling wave solutions. Because obtained traveling wave system is an integrable singular traveling wave system having a singular straight line and the origin in the phase plane is a high-order equilibrium point. We need to use the theory of singular systems to analyze the dynamics and bifurcation behavior of solutions of system. For $ m>1 $ and $ 0<m = \frac1n<\frac12 $, corresponding to the level curves given by $ H(\psi, y) = 0 $, the exact explicit bounded traveling wave solutions can be given. For $ m = 1 $, corresponding all bounded phase orbits and depending on the changes of system's parameters, all exact traveling wave solutions of the equation can be obtain.
Citation: |
[1] |
P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Second edition, revised. Die Grundlehren der mathematischen Wissenschaften, Band 67 Springer-Verlag, New York-Heidelberg, 1971.
![]() ![]() |
[2] |
J. Li, J. Wu and H. Zhu, Travelling waves for an integrable higher order KdV type wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 2235-2260.
doi: 10.1142/S0218127406016033.![]() ![]() ![]() |
[3] |
J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4049-4065.
doi: 10.1142/S0218127407019858.![]() ![]() ![]() |
[4] |
J. Li and H. Dai, On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach, Science Press, Beijing, 2007.
![]() |
[5] |
J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact solutions, Science Press, Beijing, 2013.
![]() |
[6] |
J. Li, W. Zhou and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650207, 27 pp.
doi: 10.1142/S0218127416502072.![]() ![]() ![]() |
[7] |
A. M. Shahoot, K. A. E. Alurrfi, I. M. Hassan and A. M. Almsri, Solitons and other exact solutions for two nonlinear PDEs in mathematical physics using the generalized projective riccati equations method,, Adv. Math. Phys., 2018 (2018), Art. ID 6870310, 11 pp.
doi: 10.1155/2018/6870310.![]() ![]() ![]() |
[8] |
N. K. Vitanov, Z. D. Dimitrova and T. I. Ivanova, On solitary wave solutions of a class of nonlinear partial differential equations based on the function $\frac{1}{\cosh^n(\alpha x+\beta t)}$,, Appl. Math. Compu., 315 (2017), 372-380.
doi: 10.1016/j.amc.2017.07.064.![]() ![]() ![]() |
[9] |
G. Q. Xu, New types of exact solutions for the fourth-order dispersive cubic-quintic nonlinear Schrödinger equation, Appl. Math. Comput., 217 (2011), 5967-5971.
doi: 10.1016/j.amc.2010.12.008.![]() ![]() ![]() |
[10] |
E. M. Zayed, A. G. Al-Nowehy and M. E. Elshater, Solitons and other solutions to nonlinear schrödinger equation with fourth-order dispersion and dual power law nonlinearity, Ric. Mat., 66 (2017), 531-552.
![]() ![]() |
The bifurcations of phase portraits of system (8) when
The bifurcations of phase portraits of system (8) when
The bifurcations of phase portraits of system (8) when
The bifurcations of phase portraits of system (8) when
The level curves of defined by
The changes of the level curves defined by
The bifurcations of phase portraits of system (8) when
The bifurcations of phase portraits of system (8) for