\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Minimum energy compensation for discrete delayed systems with disturbances

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • This work is devoted to the remediability problem for a class of discrete delayed systems. We investigate the possibility of reducing the disturbance effect with a convenient choice of the control operator. We give the main properties and characterization results of this concept, according to the delay and the observation. Then, under an appropriate hypothesis, we demonstrate how to find the optimal control which ensures the compensation of a disturbance measured through the observation (measurements, signals, ...). The discrete version of the wave equation, as well as the usual actuators and sensors, are examined. Numerical results are also presented.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Control observation for $ N = 10 $

    Figure 2.  Control observation for $ N = 20 $

  • [1] L. AfifiM. BahadiA. Chafiai and A. El Mizane, Asymptotic compensation in discrete distributed systems: Analysis, approximations and simulations, Applied Mathematical Sciences, 2 (2008), 99-137. 
    [2] L. Afifi and A. El Jai, Systémes Distribués Perturbés, Presses Universitaires de Perpignan (frensh), 2015.
    [3] R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, 8. Springer-Verlag, Berlin-New York, 1978.
    [4] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.
    [5] A. El Jaï and A. J. Pritchard, Sensors and actuators in distributed systems, International Journal of Control, 46 (1987), 1139-1153.  doi: 10.1080/00207178708933956.
    [6] E. Fridman, Introduction to Time-Delay Systems: Analysis and Control, Systems & Control: Foundations & Applications, Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-09393-2.
    [7] S. Hadd and A. Idrissi, Regular linear systems governed by systems with state, input and output delays, IMA Journal of Mathematical Control and Information, 22 (2005), 423-439.  doi: 10.1093/imamci/dni035.
    [8] S. Hadd, An evolution equation approach to nonautonomous linear systems with state, input, and output delays, SIAM Journal on Control and Optimization, 45 (2006), 246-272.  doi: 10.1137/040612178.
    [9] S. Hadd and Q.-C. Zhong, On feedback stabilizability of linear systems with state and input delays in Banach spaces, IEEE Transactions on Automatic Control, 54 (2009), 438-451.  doi: 10.1109/TAC.2009.2012969.
    [10] H. Shi, G. M. Xie and W. G. Luo, Controllability of linear discrete time systems with both delayed states and delayed inputs, Abstract and Applied Analysis, (2013), Art. ID 975461, 5 pp. doi: 10.1155/2013/975461.
    [11] V. Isakov, Inverse Source Problems, Mathematical Surveys and Monographs, 34. American Mathematical Society, Providence, RI, 1990. doi: 10.1090/surv/034.
    [12] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, New York-London-Sydney, 1972.
    [13] J.-L. Lions, Contrȏle Optimal de Systémes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, Gauthier-Villars, Paris, 1968.
    [14] M. Naim, F. Lahmidi, A. Namir and M. Rachik, On the output controllability of positive discrete linear delay systems, Abstract and Applied Analysis, (2017), Art. ID 3651271, 12 pp. doi: 10.1155/2017/3651271.
    [15] V. N. Phat and T. C. Dieu, Constrained controllability of linear discrete nonstationary systems in banach spaces, SIAM J. Control Optim., 30 (1992), 1311-1318.  doi: 10.1137/0330069.
    [16] V. N. Phat, Controllability of discrete-time systems with multiple delays on controls and states, International Journal of Control, 49 (1989), 1645-1654.  doi: 10.1080/00207178908559731.
    [17] R. Rabah and M. Malabare, Structure at infinity revisited for delay systems, IEEE-SMC-IMACS Multiconference, Symposium on Robotics and Cybernetics (CESA'96). Symposium in Modelling, Analysis and Simulation, (1996), 87–90. https://hal.archives-ouvertes.fr/hal-01466183
    [18] R. Rabah and M. Malabare, Weak structure at infinity and row-by-row decoupling for linear delay systems, Kybernetika, 40 (2004), 181-195. 
    [19] M. RachikM. Lhous and A. Tridane, Controllability and Optimal Control Problem for Linear Time-varying Discrete Distributed Systems, Systems Analysis Modelling Simulation, 43 (2003), 137-164. 
    [20] J.-P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica J. IFAC, 39 (2003), 1667-1694.  doi: 10.1016/S0005-1098(03)00167-5.
    [21] S. Souhaile and L. Afifi, Cheap compensation in disturbed linear dynamical systems with multi-input delays, International Journal of Dynamics and Control. https://doi.org/10.1007/s40435-018-00505-6. doi: 10.1007/s40435-018-00505-6.
    [22] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(334) PDF downloads(247) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return