We consider a differential operator of order 2$ n $ of the type $ A_n u = (-1)^n (a u^{(n)})^{(n)} $, where $ a(x)>0 $ in $ [0, 1]\setminus\{x_0\} $ and $ a(x_0) = 0 $. We show that, for any $ n\in{\mathbb{N}} $, the operator $ -A_n $ generates a contractive analytic semigroup of angle $ \pi/2 $ on $ L^2 (0, 1) $. Note that the domain of $ A_n $ depends on the type of degeneracy of $ a $. Our theorems extend some previous results in [
Citation: |
[1] |
I. Boutaayamou, G. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., 135 (2018), 1-35.
doi: 10.1007/s11854-018-0030-2.![]() ![]() ![]() |
[2] |
P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of the degenerate heat equations, Adv. Diff. Equations, 10 (2005), 153-190.
![]() ![]() |
[3] |
G. Fragnelli, G. Ruiz Goldstein, J. A. Goldstein and S. Romanelli, Generators with interior degeneracy on spaces of L2 type, Electron. J. Differ. Equations, 2012 (2012), 30 pp.
![]() ![]() |
[4] |
G. Fragnelli, G. Ruiz Goldstein, J. A. Goldstein, R. M. Mininni and S. Romanelli, Generalized Wentzell boundary conditions for second order operators with interior degeneracy, Discrete Cont. Dyn. Systems-S, 9 (2016), 697-715.
doi: 10.3934/dcdss.2016023.![]() ![]() ![]() |
[5] |
G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy, J. Evol. Equ., 15 (2015), 27-51.
doi: 10.1007/s00028-014-0247-1.![]() ![]() ![]() |
[6] |
G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations (eds. A. Favini, G. Fragnelli, R. M. Mininni), Springer INdAM Series 10 (2014), 121-139.
doi: 10.1007/978-3-319-11406-4_7.![]() ![]() ![]() |
[7] |
G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013), 339-378.
doi: 10.1515/anona-2013-0015.![]() ![]() ![]() |
[8] |
G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., 242 (2016).
doi: 10.1090/memo/1146.![]() ![]() ![]() |
[9] |
G. Fragnelli and D. Mugnai, Corrigendum and improvements to "Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations", and its consequences, Mem. Amer. Math. Soc., to appear
![]() |
[10] |
J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Mineola, New York, 2017.
![]() ![]() |