
-
Previous Article
Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity
- DCDS-S Home
- This Issue
-
Next Article
Global bifurcation of solutions of the mean curvature spacelike equation in certain standard static spacetimes
Bifurcation and stability analysis for a nutrient-phytoplankton model with toxic effects
Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B5A3, Canada |
In this paper, we analyze a nutrient-phytoplankton model with toxic effects governed by a Holling-type Ⅲ functional. We show the model can undergo two saddle-node bifurcations and a Hopf bifurcation. This results in very interesting dynamics: the model can have at most three positive equilibria and can exhibit relaxation oscillations. Our results provide some insights on understanding the occurrence and control of phytoplankton blooms.
References:
[1] |
S. Chakraborty, S. Chatterjee, E. Venturino and J. Chattopadhyay,
Recurring plankton bloom dynamics modeled via toxin producing phytoplankton, J. Biol. Phys., 33 (2007), 271-290.
doi: 10.1007/s10867-008-9066-3. |
[2] |
S. Chakraborty, P. K. Tiwari, A. K. Misra and J. Chattopadhyay,
Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton, Math. Biosci., 264 (2015), 94-100.
doi: 10.1016/j.mbs.2015.03.010. |
[3] |
J. Chattopadhyay, R. R. Sarkarw and S. Mandalw,
Toxin-producing plankton may act as a biological control for planktonic blooms—Field study and mathematical modelling, J. Theor. Biol., 215 (2002), 333-344.
doi: 10.1006/jtbi.2001.2510. |
[4] |
G. M. Hallegraeff,
A review of harmful algal blooms and their apparent global increase, Phycologia, 32 (1993), 79-99.
doi: 10.2216/i0031-8884-32-2-79.1. |
[5] |
S.-B. Hsu and J. P. Shi,
Relaxation oscillations profile of limit cycle in predator-prey system, Discret. Contin. Dyn. Syst.-B, 11 (2009), 893-911.
doi: 10.3934/dcdsb.2009.11.893. |
[6] |
W. S. Liu, D. M. Xiao and Y. F. Yi,
Relaxation oscillations in a class of predator-prey systems, J. Differential Equations, 188 (2003), 306-331.
doi: 10.1016/S0022-0396(02)00076-1. |
[7] |
T. G. Nielsen, T. Kirboe and P. K. Bjrnsen,
Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community, Mar. Ecol. Prog. Ser., 62 (1990), 21-35.
doi: 10.3354/meps062021. |
[8] |
S. Pal, S. Chatterjee and J. Chattopadhyay,
Role of toxin and nutrient for the occurence and termination of plankton bloom-results drawn from field observations and a mathematical model, Biosystems, 90 (2007), 87-100.
|
[9] |
S. Roy and J. Chattopadhyay,
Toxin-alleopathy among phytoplankton species prevents competition exclusion, J. Biol. Syst., 15 (2007), 73-93.
|
[10] |
H. Y. Shu, X. Hu, L. Wang and J. Watmough,
Delay induced stability switch, multi-type bistability and chaos in an intraguild predation model, J. Math. Biol., 71 (2015), 1269-1298.
doi: 10.1007/s00285-015-0857-4. |
[11] |
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications To Physics, Biology, Chemistry, and Engineering,, Second edition, Westview Press, Boulder, CO, 2015.
![]() ![]() |
show all references
References:
[1] |
S. Chakraborty, S. Chatterjee, E. Venturino and J. Chattopadhyay,
Recurring plankton bloom dynamics modeled via toxin producing phytoplankton, J. Biol. Phys., 33 (2007), 271-290.
doi: 10.1007/s10867-008-9066-3. |
[2] |
S. Chakraborty, P. K. Tiwari, A. K. Misra and J. Chattopadhyay,
Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton, Math. Biosci., 264 (2015), 94-100.
doi: 10.1016/j.mbs.2015.03.010. |
[3] |
J. Chattopadhyay, R. R. Sarkarw and S. Mandalw,
Toxin-producing plankton may act as a biological control for planktonic blooms—Field study and mathematical modelling, J. Theor. Biol., 215 (2002), 333-344.
doi: 10.1006/jtbi.2001.2510. |
[4] |
G. M. Hallegraeff,
A review of harmful algal blooms and their apparent global increase, Phycologia, 32 (1993), 79-99.
doi: 10.2216/i0031-8884-32-2-79.1. |
[5] |
S.-B. Hsu and J. P. Shi,
Relaxation oscillations profile of limit cycle in predator-prey system, Discret. Contin. Dyn. Syst.-B, 11 (2009), 893-911.
doi: 10.3934/dcdsb.2009.11.893. |
[6] |
W. S. Liu, D. M. Xiao and Y. F. Yi,
Relaxation oscillations in a class of predator-prey systems, J. Differential Equations, 188 (2003), 306-331.
doi: 10.1016/S0022-0396(02)00076-1. |
[7] |
T. G. Nielsen, T. Kirboe and P. K. Bjrnsen,
Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community, Mar. Ecol. Prog. Ser., 62 (1990), 21-35.
doi: 10.3354/meps062021. |
[8] |
S. Pal, S. Chatterjee and J. Chattopadhyay,
Role of toxin and nutrient for the occurence and termination of plankton bloom-results drawn from field observations and a mathematical model, Biosystems, 90 (2007), 87-100.
|
[9] |
S. Roy and J. Chattopadhyay,
Toxin-alleopathy among phytoplankton species prevents competition exclusion, J. Biol. Syst., 15 (2007), 73-93.
|
[10] |
H. Y. Shu, X. Hu, L. Wang and J. Watmough,
Delay induced stability switch, multi-type bistability and chaos in an intraguild predation model, J. Math. Biol., 71 (2015), 1269-1298.
doi: 10.1007/s00285-015-0857-4. |
[11] |
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications To Physics, Biology, Chemistry, and Engineering,, Second edition, Westview Press, Boulder, CO, 2015.
![]() ![]() |





[1] |
Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419 |
[2] |
Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923 |
[3] |
Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203 |
[4] |
Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233 |
[5] |
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 |
[6] |
Zhichao Jiang, Zexian Zhang, Maoyan Jie. Bifurcation analysis in a delayed toxic-phytoplankton and zooplankton ecosystem with Monod-Haldane functional response. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 691-715. doi: 10.3934/dcdsb.2021061 |
[7] |
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 |
[8] |
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 |
[9] |
Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045 |
[10] |
Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215 |
[11] |
Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21 |
[12] |
W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351 |
[13] |
Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069 |
[14] |
Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022069 |
[15] |
Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489 |
[16] |
Shu Li, Zhenzhen Li, Binxiang Dai. Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022025 |
[17] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[18] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[19] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[20] |
Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]