-
Previous Article
Pseudospectral discretization of delay differential equations in sun-star formulation: Results and conjectures
- DCDS-S Home
- This Issue
-
Next Article
Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays
Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects
Department of Mathematics, Alagappa University, Karaikudi-630 004, India |
This manuscript prospects the controllability analysis of non-instantaneous impulsive Volterra type fractional differential systems with state delay. By enroling an appropriate Grammian matrix with the assistance of Laplace transform, the conditions to obtain the necessary and sufficiency for the controllability of non-instantaneous impulsive Volterra-type fractional differential equations are derived using algebraic approach and Cayley-Hamilton theorem. A distinctive approach presents in the manuscript, i have taken non-instantaneous impulses into the fractional order dynamical system with state delay and studied the controllability analysis, since this not exists in the available source of literature. Inclusively, i have provided two illustrative examples with the existence of non-instantaneous impulse into the fractional dynamical system. So this demonstrates the validity and efficacy of our obtained criteria of the main section.
References:
[1] |
R. Agarwal, M. Benchohra and B. Slimani,
Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys., 44 (2008), 1-21.
|
[2] |
R. Agarwal, M. Benchohra and S. Hamani,
A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033.
doi: 10.1007/s10440-008-9356-6. |
[3] |
R. Agarwal, S. Hristova and D. O. Regan,
Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.
doi: 10.1016/j.jfranklin.2017.02.002. |
[4] |
R. Agarwal, S. Hristova and D. O. Regan, p-Moment exponential stability of Caputo fractional differential equations with noninstantaneous random impulses, Journal of Applied Mathematics and Computing, 2016 (2016), 1-26. Google Scholar |
[5] |
R. Agarwal, S. Hristova and D. O. Regan, Stability of Solutions to Impulsive Caputo Fractinal Differential Equations, Electron. J. Differential Equations, 2016. |
[6] |
R. Agarwal, S. Hristova and D. O. Regan,
A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 290-318.
doi: 10.1515/fca-2016-0017. |
[7] |
R. Agarwal, D. O. Regan and S. Hristova,
Monotone iterative technique for the initial value problem for differential equations with noninstantaneous impulses, Appl. Math. Comput., 298 (2017), 45-56.
doi: 10.1016/j.amc.2016.10.009. |
[8] |
R. Agarwal, D. O. Regan and S. Hristova,
Stability by Lyapunov like functions of nonlinear differential equations with noninstantaneous impulses, J. Appl. Math. Comput., 53 (2017), 147-168.
doi: 10.1007/s12190-015-0961-z. |
[9] |
M. Benchohra and D. Seba, Impulsive Fractional Differential Equations in Banach Spaces, Electron. J. Qual. Theory Differ. Equ., Special Edition I, 2009.
doi: 10.14232/ejqtde.2009.4.8. |
[10] |
G. Bonanno, R. Rodriquez-Lopez and S. Tersian,
Existence of solutions to boundary value problem for impulsive fractional differential equation, Fract. Calc. Appl. Anal., 17 (2014), 717-744.
doi: 10.2478/s13540-014-0196-y. |
[11] |
J. Cao and H. Chen,
Some results on impulsive boundary valueproblem for fractional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 11 (2011), 1-24.
doi: 10.14232/ejqtde.2011.1.11. |
[12] |
M. Feckan, J. R. Wang and Y. Zhou,
Periodic solutions for nonlinear evolution equations with non-istantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.
|
[13] |
M. Feckan, Y. Zhou and J. Wang,
On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050-3060.
doi: 10.1016/j.cnsns.2011.11.017. |
[14] |
J. Henderson and A. Ouahab,
Impulsive differential inclusions with fractional order, Comput. Math. Appl., 59 (2010), 1191-1226.
doi: 10.1016/j.camwa.2009.05.011. |
[15] |
E. Hernandez and D. O. Regan,
On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.
doi: 10.1090/S0002-9939-2012-11613-2. |
[16] |
S. Hristova and R. Terzieva, Lipschitz Stability of Differential Equations with Non-Instantaneous Impulses, Adv. Difference Equ., 2016.
doi: 10.1186/s13662-016-1045-6. |
[17] |
W. Jiang and W. Z. Song, Controllability of singular systems with control delay, Automatica, 37 (2001), 1873-1877. Google Scholar |
[18] |
R. E. Kalman, Y. C. Ho and K. S. Narendra,
Controllability of linear dynamical systems, Contributions to Differential Equations, 1 (1963), 189-213.
|
[19] |
T. D. Ke and D. Lan,
Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 17 (2014), 96-121.
doi: 10.2478/s13540-014-0157-5. |
[20] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. |
[21] |
P. Li and Ch. Xu, Boundary Value Problems of Fractional Order Differential Equation with Integral Boundary Conditions and Not Instantaneous Impulses, J. Funct. Spaces, 2015.
doi: 10.1155/2015/954925. |
[22] |
N. I. Mahmudov,
Controllability of Linear Stochastic Systems in Hilbert Spaces, J. Math. Anal. Appl., 259 (2001), 64-82.
doi: 10.1006/jmaa.2000.7386. |
[23] |
N. I. Mahmudov,
Controllability of Semilinear Stochastic Systems in Hilbert Spaces, J. Math. Anal. Appl., 288 (2003), 197-211.
doi: 10.1016/S0022-247X(03)00592-4. |
[24] |
K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993. |
[25] |
D. N. Pandey, S. Das and N. Sukavanam,
Existence of solutions for a second order neutral differential equation with state dependent delay and not instantaneous impulses, Int. J. Nonlinear Sci., 18 (2014), 145-155.
|
[26] |
M. Pierri, D. O. Regan and V. Rolnik,
Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743-6749.
doi: 10.1016/j.amc.2012.12.084. |
[27] |
I. Podlubny, Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[28] |
R. Rodriquez-Lopez and S. Tersian,
Multiple solutions to boundary value problm for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1016-1038.
doi: 10.2478/s13540-014-0212-2. |
[29] |
X. B. Shu, Y. Lai and Y. Chen,
The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal., 74 (2011), 2003-2011.
doi: 10.1016/j.na.2010.11.007. |
[30] |
A. Sood and S. K. Srivastava, On Stability of Differential Systems with Noninstantaneous Impulses, Math. Probl. Eng., 2015.
doi: 10.1155/2015/691687. |
[31] |
C. Tunc,
A note on the qualitative behaviors of non-linear Volterra integro-differential equation, J. Egyptian Math. Soc., 24 (2016), 187-192.
doi: 10.1016/j.joems.2014.12.010. |
[32] |
C. Tunc and O. Tunc, New qualitative criteria for solutions of Volterra integro-differential equations, Arab Journal of Basic and Applied Sciences, 25 (2018), 158-165. Google Scholar |
[33] |
J. R. Wang, M. Feckan and Y. Zhou,
Relaxed controls for nonlinear fractional impulsive evolution equations, J. Optim. Theory Appl., 156 (2013), 13-32.
doi: 10.1007/s10957-012-0170-y. |
[34] |
J. Wang and Z. Lin,
A class of impulsive nonautonomous differential equations and Ulam - Hyers-Rassias stability, Math. Methods Appl. Sci., 38 (2015), 868-880.
doi: 10.1002/mma.3113. |
[35] |
J. Wang, Y. Zhou and Z. Lin,
On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649-657.
doi: 10.1016/j.amc.2014.06.002. |
[36] |
R. Wang, M. Feckan and Y. Zhou,
On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-361.
doi: 10.4310/DPDE.2011.v8.n4.a3. |
[37] |
X. Zhang, X. Huang and Z. Liu,
The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybrid Syst., 4 (2010), 775-781.
doi: 10.1016/j.nahs.2010.05.007. |
show all references
References:
[1] |
R. Agarwal, M. Benchohra and B. Slimani,
Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys., 44 (2008), 1-21.
|
[2] |
R. Agarwal, M. Benchohra and S. Hamani,
A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033.
doi: 10.1007/s10440-008-9356-6. |
[3] |
R. Agarwal, S. Hristova and D. O. Regan,
Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.
doi: 10.1016/j.jfranklin.2017.02.002. |
[4] |
R. Agarwal, S. Hristova and D. O. Regan, p-Moment exponential stability of Caputo fractional differential equations with noninstantaneous random impulses, Journal of Applied Mathematics and Computing, 2016 (2016), 1-26. Google Scholar |
[5] |
R. Agarwal, S. Hristova and D. O. Regan, Stability of Solutions to Impulsive Caputo Fractinal Differential Equations, Electron. J. Differential Equations, 2016. |
[6] |
R. Agarwal, S. Hristova and D. O. Regan,
A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 290-318.
doi: 10.1515/fca-2016-0017. |
[7] |
R. Agarwal, D. O. Regan and S. Hristova,
Monotone iterative technique for the initial value problem for differential equations with noninstantaneous impulses, Appl. Math. Comput., 298 (2017), 45-56.
doi: 10.1016/j.amc.2016.10.009. |
[8] |
R. Agarwal, D. O. Regan and S. Hristova,
Stability by Lyapunov like functions of nonlinear differential equations with noninstantaneous impulses, J. Appl. Math. Comput., 53 (2017), 147-168.
doi: 10.1007/s12190-015-0961-z. |
[9] |
M. Benchohra and D. Seba, Impulsive Fractional Differential Equations in Banach Spaces, Electron. J. Qual. Theory Differ. Equ., Special Edition I, 2009.
doi: 10.14232/ejqtde.2009.4.8. |
[10] |
G. Bonanno, R. Rodriquez-Lopez and S. Tersian,
Existence of solutions to boundary value problem for impulsive fractional differential equation, Fract. Calc. Appl. Anal., 17 (2014), 717-744.
doi: 10.2478/s13540-014-0196-y. |
[11] |
J. Cao and H. Chen,
Some results on impulsive boundary valueproblem for fractional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 11 (2011), 1-24.
doi: 10.14232/ejqtde.2011.1.11. |
[12] |
M. Feckan, J. R. Wang and Y. Zhou,
Periodic solutions for nonlinear evolution equations with non-istantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.
|
[13] |
M. Feckan, Y. Zhou and J. Wang,
On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050-3060.
doi: 10.1016/j.cnsns.2011.11.017. |
[14] |
J. Henderson and A. Ouahab,
Impulsive differential inclusions with fractional order, Comput. Math. Appl., 59 (2010), 1191-1226.
doi: 10.1016/j.camwa.2009.05.011. |
[15] |
E. Hernandez and D. O. Regan,
On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.
doi: 10.1090/S0002-9939-2012-11613-2. |
[16] |
S. Hristova and R. Terzieva, Lipschitz Stability of Differential Equations with Non-Instantaneous Impulses, Adv. Difference Equ., 2016.
doi: 10.1186/s13662-016-1045-6. |
[17] |
W. Jiang and W. Z. Song, Controllability of singular systems with control delay, Automatica, 37 (2001), 1873-1877. Google Scholar |
[18] |
R. E. Kalman, Y. C. Ho and K. S. Narendra,
Controllability of linear dynamical systems, Contributions to Differential Equations, 1 (1963), 189-213.
|
[19] |
T. D. Ke and D. Lan,
Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 17 (2014), 96-121.
doi: 10.2478/s13540-014-0157-5. |
[20] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. |
[21] |
P. Li and Ch. Xu, Boundary Value Problems of Fractional Order Differential Equation with Integral Boundary Conditions and Not Instantaneous Impulses, J. Funct. Spaces, 2015.
doi: 10.1155/2015/954925. |
[22] |
N. I. Mahmudov,
Controllability of Linear Stochastic Systems in Hilbert Spaces, J. Math. Anal. Appl., 259 (2001), 64-82.
doi: 10.1006/jmaa.2000.7386. |
[23] |
N. I. Mahmudov,
Controllability of Semilinear Stochastic Systems in Hilbert Spaces, J. Math. Anal. Appl., 288 (2003), 197-211.
doi: 10.1016/S0022-247X(03)00592-4. |
[24] |
K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993. |
[25] |
D. N. Pandey, S. Das and N. Sukavanam,
Existence of solutions for a second order neutral differential equation with state dependent delay and not instantaneous impulses, Int. J. Nonlinear Sci., 18 (2014), 145-155.
|
[26] |
M. Pierri, D. O. Regan and V. Rolnik,
Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743-6749.
doi: 10.1016/j.amc.2012.12.084. |
[27] |
I. Podlubny, Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[28] |
R. Rodriquez-Lopez and S. Tersian,
Multiple solutions to boundary value problm for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1016-1038.
doi: 10.2478/s13540-014-0212-2. |
[29] |
X. B. Shu, Y. Lai and Y. Chen,
The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal., 74 (2011), 2003-2011.
doi: 10.1016/j.na.2010.11.007. |
[30] |
A. Sood and S. K. Srivastava, On Stability of Differential Systems with Noninstantaneous Impulses, Math. Probl. Eng., 2015.
doi: 10.1155/2015/691687. |
[31] |
C. Tunc,
A note on the qualitative behaviors of non-linear Volterra integro-differential equation, J. Egyptian Math. Soc., 24 (2016), 187-192.
doi: 10.1016/j.joems.2014.12.010. |
[32] |
C. Tunc and O. Tunc, New qualitative criteria for solutions of Volterra integro-differential equations, Arab Journal of Basic and Applied Sciences, 25 (2018), 158-165. Google Scholar |
[33] |
J. R. Wang, M. Feckan and Y. Zhou,
Relaxed controls for nonlinear fractional impulsive evolution equations, J. Optim. Theory Appl., 156 (2013), 13-32.
doi: 10.1007/s10957-012-0170-y. |
[34] |
J. Wang and Z. Lin,
A class of impulsive nonautonomous differential equations and Ulam - Hyers-Rassias stability, Math. Methods Appl. Sci., 38 (2015), 868-880.
doi: 10.1002/mma.3113. |
[35] |
J. Wang, Y. Zhou and Z. Lin,
On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649-657.
doi: 10.1016/j.amc.2014.06.002. |
[36] |
R. Wang, M. Feckan and Y. Zhou,
On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-361.
doi: 10.4310/DPDE.2011.v8.n4.a3. |
[37] |
X. Zhang, X. Huang and Z. Liu,
The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybrid Syst., 4 (2010), 775-781.
doi: 10.1016/j.nahs.2010.05.007. |
[1] |
Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084 |
[2] |
Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050 |
[3] |
Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058 |
[4] |
Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033 |
[5] |
Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031 |
[6] |
Liang Bai, Juan J. Nieto, José M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1915-1930. doi: 10.3934/cpaa.2020084 |
[7] |
Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020428 |
[8] |
Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete & Continuous Dynamical Systems - S, 2019 doi: 10.3934/dcdss.2020171 |
[9] |
Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021030 |
[10] |
Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029 |
[11] |
Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060 |
[12] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[13] |
Irene Benedetti, Valeri Obukhovskii, Valentina Taddei. Evolution fractional differential problems with impulses and nonlocal conditions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1899-1919. doi: 10.3934/dcdss.2020149 |
[14] |
Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267 |
[15] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057 |
[16] |
Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042 |
[17] |
Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021013 |
[18] |
Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 |
[19] |
Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 |
[20] |
Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]