September  2020, 13(9): 2475-2487. doi: 10.3934/dcdss.2020139

Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations

1. 

Department of Mathematics, Shaheed BB University, Sheringal, Dir Upper 18000, Khybar Pakhtunkhwa, Pakistan

2. 

Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University, 65080 Van, Turkey

3. 

Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia

* Corresponding author: Cemil Tunc

Received  January 2019 Revised  February 2019 Published  September 2020 Early access  November 2019

In this paper, we are dealing with singular fractional differential equations (DEs) having delay and
$ \mho_p $
(
$ p $
-Laplacian operator). In our problem, we Contemplate two fractional order differential operators that is Riemann–Liouville and Caputo's with fractional integral and fractional differential initial boundary conditions.The SFDE is given by
$ \begin{equation*} \left\{\begin{split} &\mathcal{D}^{\gamma}\big[\mho^*_p[\mathcal{D}^{\kappa}x(t)]\big]+\mathcal{Q}(t)\zeta_1(t, x(t-\varrho^*)) = 0, \\& \mathcal{I}_0^{1-\gamma}\big(\mho^*_p[\mathcal{D}^{\kappa}x(t)]\big)|_{t = 0} = 0 = \mathcal{I}_0^{2-\gamma}\big(\mho^*_p[\mathcal{D}^{\kappa}x(t)]\big)|_{t = 0}, \\& \mathcal{D}^{\delta^*}x(1) = 0, \, \, x(1) = x'(0), \, \, x^{(k)}(0) = 0\text{ for $k = 2, 3, \ldots, n-1$}, \end{split}\right. \end{equation*} $
$ \zeta_1 $
is a continuous function and singular at
$ t $
and
$ x(t) $
for some values of
$ t\in [0, 1] $
. The operator
$ \mathcal{D}^{\gamma}, \, $
is Riemann–Liouville fractional derivative while
$ \mathcal{D}^{\delta^*}, \mathcal{D}^{\kappa} $
stand for Caputo fractional derivatives and
$ \delta^*, \, \gamma\in(1, 2] $
,
$ n-1<\kappa\leq n, $
where
$ n\geq3 $
. For the study of the EUS, fixed point approach is followed in this paper and an application is given to explain the findings.
Citation: Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139
References:
[1]

B. AhmadA. AlsaediR. P. Agarwal and A. Alsharif, On sequential fractional integro-differential equations with nonlocal integral boundary conditions, Bull. Malays. Math. Sci. Soc., 41 (2018), 1725-1737.  doi: 10.1007/s40840-016-0421-4.

[2]

A. Atangana and J. F. Gómez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Solitons Fractals, 102 (2017), 285-294.  doi: 10.1016/j.chaos.2017.03.022.

[3]

A. Atangana and J. F. Gómez-Aguilar, A new derivative with normal distribution kernel: Theory, methods and applications, Phys. A, 476 (2017), 1-14.  doi: 10.1016/j.physa.2017.02.016.

[4]

A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 1-22.  doi: 10.1140/epjp/i2018-12021-3.

[5]

A. Atangana and J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-L iouville to Atangana-Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.  doi: 10.1002/num.22195.

[6]

T. AbdeljawadF. Jarad and D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A, 51 (2008), 1775-1786.  doi: 10.1007/s11425-008-0068-1.

[7]

T. Abdeljawad, D. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11 pp. doi: 10.1063/1.2970709.

[8]

T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2018), 218-230.  doi: 10.1016/j.cam.2017.10.021.

[9]

T. Abdeljawad and J. Alzabut, On Riemann-Liouville fractional q–difference equations and their application to retarded logistic type model, Math. Methods Appl. Sci., 41 (2018), 8953-8962.  doi: 10.1002/mma.4743.

[10]

B. Ahmad and R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516-534.  doi: 10.1016/j.amc.2018.07.025.

[11]

J. AlzabutT. Abdeljawad and D. Baleanu, Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model, J. Comput. Anal. Appl., 25 (2018), 889-898. 

[12]

J. AlzabutT. Abdeljawad and D. Baleanu, Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model, J. Comput. Anal. Appl., 25 (2018), 889-898. 

[13]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Difference Equ., 2017 (2017), 11 pp. doi: 10.1186/s13662-017-1285-0.

[14]

A. Babakhani and T. Abdeljawad, A Caputo Fractional Order Boundary Value Problem with Integral Boundary Conditions, J. Comput. Anal. Appl., 15 (2013), 753-763. 

[15]

Y. K. Chang and R. Ponce, Uniform exponential stability and applications to bounded solutions of integro-differential equations in Banach spaces, J. Integral Equations Appl., 30 (2018), 347-369.  doi: 10.1216/JIE-2018-30-3-347.

[16]

A. Coronel-EscamillaJ. F. Gómez-AguilarM. G. López-LópezV. M. Alvarado-Martínez and G. V. Guerrero-Ramírez, Triple pendulum model involving fractional derivatives with different kernels, Chaos Solitons Fractals, 91 (2016), 248-261.  doi: 10.1016/j.chaos.2016.06.007.

[17]

J. Henderson and R. Luca, Systems of Riemann–Liouville fractional equations with multi-point boundary conditions, Appl. Math. Comput., 309 (2017), 303-323.  doi: 10.1016/j.amc.2017.03.044.

[18]

L. GuoL. Liu and Y. Wu, Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters, Nonlinear Anal., Model. Control, 23 (2018), 182-203.  doi: 10.15388/NA.2018.2.3.

[19]

A. GhanmiaM. Kratoub and K. Saoudib, A Multiplicity Results for a Singular Problem Involving a Riemann-Liouville Fractional Derivative, Filomat, 32 (2018), 653-669.  doi: 10.2298/FIL1802653G.

[20]

J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 (2017), 13pp.

[21]

J. F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J. M. Reyes and I. O. Sosa, Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel, Adv. Difference Equ., 2016 (2016), Paper No. 173, 13 pp. doi: 10.1186/s13662-016-0908-1.

[22]

R. Hilfer, Application of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.

[23]

S. Hristova and C. Tunc, Stability of nonlinear volterra integro-differential equations with caputo fractional derivative and bounded delays, Electron. J. Differential Equations, 2019 (2019), Paper No. 30, 11 pp.

[24]

D. Ji, Positive Solutions of Singular Fractional Boundary Value Problem with p-Laplacian., Bull. Malays. Math. Sci. Soc., 41 (2018), 249-263.  doi: 10.1007/s40840-015-0276-0.

[25]

E. T. Karimov and K. Sadarangani, Existence of a unique positive solution for a singular fractional boundary value problem, Carpathian J. Math., 34 (2018), 57-64. 

[26]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

[27]

A. Khan, Y. Li, K. Shah and T. S. Khan, On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), Art. ID 8197610, 9 pp. doi: 10.1155/2017/8197610.

[28]

H. KhanC. TuncW. Chen and A. Khan, Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8 (2018), 1211-1226. 

[29]

H. KhanW. Chen and H. Sun, Analysis of positive solution and Hyers–Ulam stability for a class of singular fractional differential equations with p–Laplacian in Banach space, Math. Methods Appl. Sci., 41 (2018), 3430-3440.  doi: 10.1002/mma.4835.

[30]

B. LópezJ. Harjani and K. Sadarangani, Existence of positive solutions in the space of Lipschitz functions to a class of fractional differential equations of arbitrary order, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 112 (2018), 1281-1294.  doi: 10.1007/s13398-017-0426-3.

[31]

R. Luca, On a class of nonlinear singular Riemann-Liouville fractional differential equations, Results Math., 73 (2018), Art. 125, 15 pp. doi: 10.1007/s00025-018-0887-5.

[32]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

[33]

S. G. Samko, A. A. Kilbas and O. I Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

[34]

K. Saoudi, A critical fractional elliptic equation with singular nonlinearities, Fract. Calc. Appl. Anal., 20 (2017), 1507-1530.  doi: 10.1515/fca-2017-0079.

[35]

H. Srivastava, A. El-Sayed and F. Gaafar, A Class of Nonlinear Boundary Value Problems for an Arbitrary Fractional-Order Differential Equation with the Riemann-Stieltjes Functional Integral and Infinite-Point Boundary Conditions, Symmetry, 2018. doi: 10.3390/sym10100508.

[36]

S. Xie and Y. Xie, Nonlinear solutions of non local boundary value problems for nonlinear higher-order singular fractional differential equations, J. Appl. Anal. Comput., 8 (2018), 938-953. 

[37]

F. Yan, M. Zuo and X. Hao, Positive solution for a fractional singular boundary value problem with p-Laplacian operator, Bound. Value Probl., 2018 (2018), Paper No. 51, 10 pp. doi: 10.1186/s13661-018-0972-4.

[38]

H. Yépez-MartínezJ. F. Gómez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mexicana Fís., 62 (2016), 310-316. 

[39]

X. Zhang and Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, Appl. Math. Lett., 80 (2028), 12-19.  doi: 10.1016/j.aml.2017.12.022.

[40]

L. Zhang, Z. Sun and X. Hao, Positive solutions for a singular fractional nonlocal boundary value problem, Adv. Difference Equ., 2018 (2018), Paper No. 381, 8 pp. doi: 10.1186/s13662-018-1844-z.

[41]

C. J. Zuñiga-Aguilar, J. F. Gómez-Aguilar and R. F. Escobar-Jiménez, Romero-Ugalde HM. Robust control for fractional variable-order chaotic systems with non-singular kernel, The European Physical Journal Plus, 133 (2018), 13pp.

show all references

References:
[1]

B. AhmadA. AlsaediR. P. Agarwal and A. Alsharif, On sequential fractional integro-differential equations with nonlocal integral boundary conditions, Bull. Malays. Math. Sci. Soc., 41 (2018), 1725-1737.  doi: 10.1007/s40840-016-0421-4.

[2]

A. Atangana and J. F. Gómez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Solitons Fractals, 102 (2017), 285-294.  doi: 10.1016/j.chaos.2017.03.022.

[3]

A. Atangana and J. F. Gómez-Aguilar, A new derivative with normal distribution kernel: Theory, methods and applications, Phys. A, 476 (2017), 1-14.  doi: 10.1016/j.physa.2017.02.016.

[4]

A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 1-22.  doi: 10.1140/epjp/i2018-12021-3.

[5]

A. Atangana and J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-L iouville to Atangana-Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.  doi: 10.1002/num.22195.

[6]

T. AbdeljawadF. Jarad and D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A, 51 (2008), 1775-1786.  doi: 10.1007/s11425-008-0068-1.

[7]

T. Abdeljawad, D. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11 pp. doi: 10.1063/1.2970709.

[8]

T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2018), 218-230.  doi: 10.1016/j.cam.2017.10.021.

[9]

T. Abdeljawad and J. Alzabut, On Riemann-Liouville fractional q–difference equations and their application to retarded logistic type model, Math. Methods Appl. Sci., 41 (2018), 8953-8962.  doi: 10.1002/mma.4743.

[10]

B. Ahmad and R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516-534.  doi: 10.1016/j.amc.2018.07.025.

[11]

J. AlzabutT. Abdeljawad and D. Baleanu, Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model, J. Comput. Anal. Appl., 25 (2018), 889-898. 

[12]

J. AlzabutT. Abdeljawad and D. Baleanu, Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model, J. Comput. Anal. Appl., 25 (2018), 889-898. 

[13]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Difference Equ., 2017 (2017), 11 pp. doi: 10.1186/s13662-017-1285-0.

[14]

A. Babakhani and T. Abdeljawad, A Caputo Fractional Order Boundary Value Problem with Integral Boundary Conditions, J. Comput. Anal. Appl., 15 (2013), 753-763. 

[15]

Y. K. Chang and R. Ponce, Uniform exponential stability and applications to bounded solutions of integro-differential equations in Banach spaces, J. Integral Equations Appl., 30 (2018), 347-369.  doi: 10.1216/JIE-2018-30-3-347.

[16]

A. Coronel-EscamillaJ. F. Gómez-AguilarM. G. López-LópezV. M. Alvarado-Martínez and G. V. Guerrero-Ramírez, Triple pendulum model involving fractional derivatives with different kernels, Chaos Solitons Fractals, 91 (2016), 248-261.  doi: 10.1016/j.chaos.2016.06.007.

[17]

J. Henderson and R. Luca, Systems of Riemann–Liouville fractional equations with multi-point boundary conditions, Appl. Math. Comput., 309 (2017), 303-323.  doi: 10.1016/j.amc.2017.03.044.

[18]

L. GuoL. Liu and Y. Wu, Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters, Nonlinear Anal., Model. Control, 23 (2018), 182-203.  doi: 10.15388/NA.2018.2.3.

[19]

A. GhanmiaM. Kratoub and K. Saoudib, A Multiplicity Results for a Singular Problem Involving a Riemann-Liouville Fractional Derivative, Filomat, 32 (2018), 653-669.  doi: 10.2298/FIL1802653G.

[20]

J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 (2017), 13pp.

[21]

J. F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J. M. Reyes and I. O. Sosa, Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel, Adv. Difference Equ., 2016 (2016), Paper No. 173, 13 pp. doi: 10.1186/s13662-016-0908-1.

[22]

R. Hilfer, Application of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.

[23]

S. Hristova and C. Tunc, Stability of nonlinear volterra integro-differential equations with caputo fractional derivative and bounded delays, Electron. J. Differential Equations, 2019 (2019), Paper No. 30, 11 pp.

[24]

D. Ji, Positive Solutions of Singular Fractional Boundary Value Problem with p-Laplacian., Bull. Malays. Math. Sci. Soc., 41 (2018), 249-263.  doi: 10.1007/s40840-015-0276-0.

[25]

E. T. Karimov and K. Sadarangani, Existence of a unique positive solution for a singular fractional boundary value problem, Carpathian J. Math., 34 (2018), 57-64. 

[26]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

[27]

A. Khan, Y. Li, K. Shah and T. S. Khan, On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), Art. ID 8197610, 9 pp. doi: 10.1155/2017/8197610.

[28]

H. KhanC. TuncW. Chen and A. Khan, Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8 (2018), 1211-1226. 

[29]

H. KhanW. Chen and H. Sun, Analysis of positive solution and Hyers–Ulam stability for a class of singular fractional differential equations with p–Laplacian in Banach space, Math. Methods Appl. Sci., 41 (2018), 3430-3440.  doi: 10.1002/mma.4835.

[30]

B. LópezJ. Harjani and K. Sadarangani, Existence of positive solutions in the space of Lipschitz functions to a class of fractional differential equations of arbitrary order, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 112 (2018), 1281-1294.  doi: 10.1007/s13398-017-0426-3.

[31]

R. Luca, On a class of nonlinear singular Riemann-Liouville fractional differential equations, Results Math., 73 (2018), Art. 125, 15 pp. doi: 10.1007/s00025-018-0887-5.

[32]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

[33]

S. G. Samko, A. A. Kilbas and O. I Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

[34]

K. Saoudi, A critical fractional elliptic equation with singular nonlinearities, Fract. Calc. Appl. Anal., 20 (2017), 1507-1530.  doi: 10.1515/fca-2017-0079.

[35]

H. Srivastava, A. El-Sayed and F. Gaafar, A Class of Nonlinear Boundary Value Problems for an Arbitrary Fractional-Order Differential Equation with the Riemann-Stieltjes Functional Integral and Infinite-Point Boundary Conditions, Symmetry, 2018. doi: 10.3390/sym10100508.

[36]

S. Xie and Y. Xie, Nonlinear solutions of non local boundary value problems for nonlinear higher-order singular fractional differential equations, J. Appl. Anal. Comput., 8 (2018), 938-953. 

[37]

F. Yan, M. Zuo and X. Hao, Positive solution for a fractional singular boundary value problem with p-Laplacian operator, Bound. Value Probl., 2018 (2018), Paper No. 51, 10 pp. doi: 10.1186/s13661-018-0972-4.

[38]

H. Yépez-MartínezJ. F. Gómez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mexicana Fís., 62 (2016), 310-316. 

[39]

X. Zhang and Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, Appl. Math. Lett., 80 (2028), 12-19.  doi: 10.1016/j.aml.2017.12.022.

[40]

L. Zhang, Z. Sun and X. Hao, Positive solutions for a singular fractional nonlocal boundary value problem, Adv. Difference Equ., 2018 (2018), Paper No. 381, 8 pp. doi: 10.1186/s13662-018-1844-z.

[41]

C. J. Zuñiga-Aguilar, J. F. Gómez-Aguilar and R. F. Escobar-Jiménez, Romero-Ugalde HM. Robust control for fractional variable-order chaotic systems with non-singular kernel, The European Physical Journal Plus, 133 (2018), 13pp.

[1]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[2]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[4]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[5]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[6]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The numerical solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026

[7]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[8]

Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014

[9]

Chao Wang, Zhien Li, Ravi P. Agarwal. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 359-386. doi: 10.3934/dcdss.2021041

[10]

Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141

[11]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[12]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[13]

Golamreza Zamani Eskandani, Hamid Vaezi. Hyers--Ulam--Rassias stability of derivations in proper Jordan $CQ^{*}$-algebras. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1469-1477. doi: 10.3934/dcds.2011.31.1469

[14]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[15]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013

[16]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[17]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[18]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[19]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[20]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (567)
  • HTML views (350)
  • Cited by (11)

Other articles
by authors

[Back to Top]