-
Previous Article
Evolution fractional differential problems with impulses and nonlocal conditions
- DCDS-S Home
- This Issue
-
Next Article
Preface to this special issue
A priori estimates for elliptic problems via Liouville type theorems
1. | Department of Mathematics, University of Firenze, viale Morgagni 40-44, 50134 Firenze, Italy |
2. | Department of Mathematics, University of Perugia, via Vanvitelli 1, 06123 Perugia, Italy |
In this paper we prove a priori estimates for positive solutions of elliptic equations of the $ p $-Laplacian type on arbitrary domains of $ \mathbb {R}^N $, when a nonlinearity depending on the gradient is considered. Also the case of systems with very general nonlinearities is considered. Our main theorems extend previous results by Polacik, Quitter and Souplet in [
References:
[1] |
C. Azizieh and P. Clèment,
A priori estimates and continuation methods for positive solutions of $p$-Laplace equations, J. Differential Equations, 179 (2002), 213-245.
doi: 10.1006/jdeq.2001.4029. |
[2] |
J.-P. Bartier,
Global behavior of solutions of a reaction-diffusion equation with gradient absorption in unbounded domains, Asymptot. Anal., 46 (2006), 325-347.
|
[3] |
M. Ben-Artzi, P. Souplet and F. B. Weissler,
The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures Appl., 81 (2002), 343-378.
doi: 10.1016/S0021-7824(01)01243-0. |
[4] |
M. Chipot and F. B. Weissler,
Some blow up results for a nonlinear parabolic problem with a gradient term, SIAM J. Math. Anal., 20 (1989), 886-907.
doi: 10.1137/0520060. |
[5] |
P. Clément, J. Fleckinger, E. Mitidieri and F. de Thélin,
Existence of positive solutions for a nonvariational quasilinear elliptic system, J. Differential Equations, 166 (2000), 455-477.
doi: 10.1006/jdeq.2000.3805. |
[6] |
P. Clément, R. Manásevich and E. Mitidieri,
Positive solutions for a quasilinear system via blow up, Comm. Partial Differential Equations, 18 (1993), 2071-2106.
doi: 10.1080/03605309308821005. |
[7] |
A. Farina and J. Serrin,
Entire solutions of completely coercive quasilinear elliptic equations, Ⅱ, J. Differential Equations, 250 (2011), 4409-4436.
doi: 10.1016/j.jde.2011.02.016. |
[8] |
R. Filippucci,
Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916.
doi: 10.1016/j.na.2008.12.018. |
[9] |
R. Filippucci,
Nonexistence of nonnegative solutions of elliptic systems of divergence type, J. Diff. Equations, 250 (2011), 572-595.
doi: 10.1016/j.jde.2010.09.028. |
[10] |
R. Filippucci and C. Lini,
Existence of solutions for quasilinear Dirichlet problems with gradient terms, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 267-286.
doi: 10.3934/dcdss.2019019. |
[11] |
R. Filippucci, P. Pucci and M. Rigoli,
Nonlinear weighted $p$-Laplacian elliptic inequalities with gradient terms, Comm. Cont. Math., 12 (2010), 501-535.
doi: 10.1142/S0219199710003841. |
[12] |
R. Filippucci and F. Vinti,
Coercive elliptic systems with gradient terms, Advances in Nonlinear Analysis, 6 (2017), 165-182.
doi: 10.1515/anona-2016-0183. |
[13] |
M. Ghergu and V. Rădulescu,
Nonradial blow-up solutions of sublinear elliptic equations with gradient terms, Comm. Pure Appl. An., 3 (2004), 465-474.
doi: 10.3934/cpaa.2004.3.465. |
[14] |
M. Ghergu and V. Rădulescu,
On a class of sublinear elliptic problems with convection term, J. Math. Anal. Appl., 311 (2005), 635-646.
doi: 10.1016/j.jmaa.2005.03.012. |
[15] |
M. Ghergu and V. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, 37. The Clarendon Press, Oxford University Press, Oxford, 2008.
![]() ![]() |
[16] |
B. Gidas and J. Spruck,
A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.
doi: 10.1080/03605308108820196. |
[17] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[18] |
H. A. Hamid and M. F. Bidaut-Véron,
Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient, C. R. Math. Acad. Sci. Paris, 346 (2008), 1251-1256.
doi: 10.1016/j.crma.2008.10.002. |
[19] |
B. Hu,
Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations, 7 (1994), 301-313.
|
[20] |
G. M. Lieberman,
Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis: Theory, Methods & Applications, 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3. |
[21] |
O. Martio and G. Porru, Large solutions of quasilinear elliptic equations in the degenerate
case, Complex analysis and differential equations (Uppsala, 1997), Acta Univ. Upsaliensis
Skr. Uppsala Univ. C Organ. Hist., Uppsala Univ., Uppsala, 64 (1999), 225–241. |
[22] |
E. Mitidieri and S. I. Pohozaev,
The absence of global positive solutions to quasilinear elliptic inequalities, Dokl. Akad. Nauk, 359 (1998), 456-460.
|
[23] |
E. Mitidieri and S. I. Pohozaev,
Absence of positive solutions for a system of quasilinear elliptic equations and inequalities in $\mathbb {R}^N$, Dokl. Akad. Nauk, 366 (1999), 13-17.
|
[24] |
E. Mitidieri and S. I. Pohozaev,
A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 3 (2001), 1-362.
|
[25] |
W.-M. Ni and J. Serrin,
Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case, Atti Convegni Lincei, 77 (1986), 231-257.
|
[26] |
P. Poláčik, P. Quitter and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems, I. Elliptic equations and systems, Duke Mathematical Journal, 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[27] |
P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007. |
[28] |
D. Ruiz,
A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Diff. Equations, 199 (2004), 96-114.
doi: 10.1016/j.jde.2003.10.021. |
[29] |
J. Serrin and H. Zou,
Cauchy-Liouville and universal boundness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142.
doi: 10.1007/BF02392645. |
[30] |
P. Souplet,
Finite time blowup for a nonlinear parabolic equation with a gradient term and applications, Math Methods Appl. Sci., 19 (1996), 1317-1333.
doi: 10.1002/(SICI)1099-1476(19961110)19:16<1317::AID-MMA835>3.0.CO;2-M. |
[31] |
P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electron. J. Differential Equations, 10 (2001), 19 pp. |
[32] |
P. Tolksdorf,
Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.
doi: 10.1016/0022-0396(84)90105-0. |
[33] |
J. L. Vázquez,
A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.
doi: 10.1007/BF01449041. |
show all references
References:
[1] |
C. Azizieh and P. Clèment,
A priori estimates and continuation methods for positive solutions of $p$-Laplace equations, J. Differential Equations, 179 (2002), 213-245.
doi: 10.1006/jdeq.2001.4029. |
[2] |
J.-P. Bartier,
Global behavior of solutions of a reaction-diffusion equation with gradient absorption in unbounded domains, Asymptot. Anal., 46 (2006), 325-347.
|
[3] |
M. Ben-Artzi, P. Souplet and F. B. Weissler,
The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures Appl., 81 (2002), 343-378.
doi: 10.1016/S0021-7824(01)01243-0. |
[4] |
M. Chipot and F. B. Weissler,
Some blow up results for a nonlinear parabolic problem with a gradient term, SIAM J. Math. Anal., 20 (1989), 886-907.
doi: 10.1137/0520060. |
[5] |
P. Clément, J. Fleckinger, E. Mitidieri and F. de Thélin,
Existence of positive solutions for a nonvariational quasilinear elliptic system, J. Differential Equations, 166 (2000), 455-477.
doi: 10.1006/jdeq.2000.3805. |
[6] |
P. Clément, R. Manásevich and E. Mitidieri,
Positive solutions for a quasilinear system via blow up, Comm. Partial Differential Equations, 18 (1993), 2071-2106.
doi: 10.1080/03605309308821005. |
[7] |
A. Farina and J. Serrin,
Entire solutions of completely coercive quasilinear elliptic equations, Ⅱ, J. Differential Equations, 250 (2011), 4409-4436.
doi: 10.1016/j.jde.2011.02.016. |
[8] |
R. Filippucci,
Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916.
doi: 10.1016/j.na.2008.12.018. |
[9] |
R. Filippucci,
Nonexistence of nonnegative solutions of elliptic systems of divergence type, J. Diff. Equations, 250 (2011), 572-595.
doi: 10.1016/j.jde.2010.09.028. |
[10] |
R. Filippucci and C. Lini,
Existence of solutions for quasilinear Dirichlet problems with gradient terms, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 267-286.
doi: 10.3934/dcdss.2019019. |
[11] |
R. Filippucci, P. Pucci and M. Rigoli,
Nonlinear weighted $p$-Laplacian elliptic inequalities with gradient terms, Comm. Cont. Math., 12 (2010), 501-535.
doi: 10.1142/S0219199710003841. |
[12] |
R. Filippucci and F. Vinti,
Coercive elliptic systems with gradient terms, Advances in Nonlinear Analysis, 6 (2017), 165-182.
doi: 10.1515/anona-2016-0183. |
[13] |
M. Ghergu and V. Rădulescu,
Nonradial blow-up solutions of sublinear elliptic equations with gradient terms, Comm. Pure Appl. An., 3 (2004), 465-474.
doi: 10.3934/cpaa.2004.3.465. |
[14] |
M. Ghergu and V. Rădulescu,
On a class of sublinear elliptic problems with convection term, J. Math. Anal. Appl., 311 (2005), 635-646.
doi: 10.1016/j.jmaa.2005.03.012. |
[15] |
M. Ghergu and V. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, 37. The Clarendon Press, Oxford University Press, Oxford, 2008.
![]() ![]() |
[16] |
B. Gidas and J. Spruck,
A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.
doi: 10.1080/03605308108820196. |
[17] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[18] |
H. A. Hamid and M. F. Bidaut-Véron,
Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient, C. R. Math. Acad. Sci. Paris, 346 (2008), 1251-1256.
doi: 10.1016/j.crma.2008.10.002. |
[19] |
B. Hu,
Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations, 7 (1994), 301-313.
|
[20] |
G. M. Lieberman,
Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis: Theory, Methods & Applications, 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3. |
[21] |
O. Martio and G. Porru, Large solutions of quasilinear elliptic equations in the degenerate
case, Complex analysis and differential equations (Uppsala, 1997), Acta Univ. Upsaliensis
Skr. Uppsala Univ. C Organ. Hist., Uppsala Univ., Uppsala, 64 (1999), 225–241. |
[22] |
E. Mitidieri and S. I. Pohozaev,
The absence of global positive solutions to quasilinear elliptic inequalities, Dokl. Akad. Nauk, 359 (1998), 456-460.
|
[23] |
E. Mitidieri and S. I. Pohozaev,
Absence of positive solutions for a system of quasilinear elliptic equations and inequalities in $\mathbb {R}^N$, Dokl. Akad. Nauk, 366 (1999), 13-17.
|
[24] |
E. Mitidieri and S. I. Pohozaev,
A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 3 (2001), 1-362.
|
[25] |
W.-M. Ni and J. Serrin,
Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case, Atti Convegni Lincei, 77 (1986), 231-257.
|
[26] |
P. Poláčik, P. Quitter and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems, I. Elliptic equations and systems, Duke Mathematical Journal, 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[27] |
P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007. |
[28] |
D. Ruiz,
A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Diff. Equations, 199 (2004), 96-114.
doi: 10.1016/j.jde.2003.10.021. |
[29] |
J. Serrin and H. Zou,
Cauchy-Liouville and universal boundness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142.
doi: 10.1007/BF02392645. |
[30] |
P. Souplet,
Finite time blowup for a nonlinear parabolic equation with a gradient term and applications, Math Methods Appl. Sci., 19 (1996), 1317-1333.
doi: 10.1002/(SICI)1099-1476(19961110)19:16<1317::AID-MMA835>3.0.CO;2-M. |
[31] |
P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electron. J. Differential Equations, 10 (2001), 19 pp. |
[32] |
P. Tolksdorf,
Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.
doi: 10.1016/0022-0396(84)90105-0. |
[33] |
J. L. Vázquez,
A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.
doi: 10.1007/BF01449041. |
[1] |
Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145 |
[2] |
Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107 |
[3] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[4] |
Dimitri Mugnai, Kanishka Perera, Edoardo Proietti Lippi. A priori estimates for the Fractional p-Laplacian with nonlocal Neumann boundary conditions and applications. Communications on Pure and Applied Analysis, 2022, 21 (1) : 275-292. doi: 10.3934/cpaa.2021177 |
[5] |
Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038 |
[6] |
Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601 |
[7] |
Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731 |
[8] |
Bojing Shi. $ W^{1, p} $ estimates for elliptic problems with drift terms in Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 537-553. doi: 10.3934/dcds.2021127 |
[9] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1121-1147. doi: 10.3934/dcdsb.2021083 |
[10] |
Samer Dweik. $ L^{p, q} $ estimates on the transport density. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3001-3009. doi: 10.3934/cpaa.2019134 |
[11] |
D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499 |
[12] |
Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277 |
[13] |
Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065 |
[14] |
Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271 |
[15] |
Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721 |
[16] |
L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure and Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9 |
[17] |
Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 |
[18] |
Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245 |
[19] |
Caiyan Li, Dongsheng Li. $ W^{1,p} $ estimates for elliptic systems on composite material with almost partially BMO coefficients. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3143-3159. doi: 10.3934/cpaa.2021100 |
[20] |
Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]