July  2020, 13(7): 1899-1919. doi: 10.3934/dcdss.2020149

Evolution fractional differential problems with impulses and nonlocal conditions

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, I-06123 Perugia, Italy

2. 

Faculty of Physics and Mathematics, Voronezh State Pedagogical University, 394043 Voronezh, Russia

3. 

Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, I-42122 Reggio Emilia, Italy

* Corresponding author: Irene Benedetti

Dedicated to Professor Patrizia Pucci on the occasion of her 65th birthday

Received  September 2018 Revised  October 2018 Published  November 2019

We obtain existence results for mild solutions of a fractional differential inclusion subjected to impulses and nonlocal initial conditions. By means of a technique based on the weak topology in connection with the Glicksberg-Ky Fan Fixed Point Theorem we are able to avoid any hypotheses of compactness on the semigroup and on the nonlinear term and at the same time we do not need to assume hypotheses of monotonicity or Lipschitz regularity neither on the nonlinear term, nor on the impulse functions, nor on the nonlocal condition. An application to a fractional diffusion process complete the discussion of the studied problem. 200 words.

Citation: Irene Benedetti, Valeri Obukhovskii, Valentina Taddei. Evolution fractional differential problems with impulses and nonlocal conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1899-1919. doi: 10.3934/dcdss.2020149
References:
[1]

K. Aissani and M. Benchohra, Impulsive fractional differential inclusions with infinite delay, Electronic Journal of Differential Equations, 2013 (2013), 13 pp.

[2]

K. BalachandranS. Kiruthika and J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun Nonlinear Sci Numer Simulat, 16 (2011), 1970-1977.  doi: 10.1016/j.cnsns.2010.08.005.

[3]

I. Benedetti, L. Malaguti and V. Taddei, Nonlocal semilinear evolution equations without strong compactness: Theory and applications, Bound. Value Probl., 2013 (2013), 18 pp. doi: 10.1186/1687-2770-2013-60.

[4]

I. Benedetti, V. Obukovskii and V. Taddei, On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space, Journal of Function Spaces, (2015), Art. ID 651359, 10 pp. doi: 10.1155/2015/651359.

[5]

I. BenedettiV. Obukovskii and V. Taddei, On generalized boundary value problems for a class of fractional differential inclusions, Fractional Calculus and Applied Analysis, 20 (2017), 1424-1446.  doi: 10.1515/fca-2017-0075.

[6]

S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math., 39 (1938), 913-944.  doi: 10.2307/1968472.

[7]

A. Chadha and D. N. Pandey, Existence of a mild solution for impulsive neutral fractional differential equations with nonlocal conditions, Differential Equations and Applications, 7 (2015), 151-168.  doi: 10.7153/dea-07-09.

[8]

A. Chauhan and J. Dabas, Existence of mild solutions for impulsive fractional-order semilinear evolution equations with nonlocal conditions, Electronic Journal of Differential Equations, 2011 (2011), 10 pp.

[9]

N. Dunford and J. T. Schwartz, Linear Operators. Part I. General theory, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988.

[10]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.

[11]

I. Ekeland and R. Teman, Convex Anaysis and Variational Problems, Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam-Oxford, American Elsevier Publishing Co., Inc., New York, 1976.

[12]

H. Ergören and A. Kiliçman, Non-local boundary value problems for impulsive fractional integro-differential equations in Banach spaces, Bound. Value Probl., 2012 (2012), 15 pp. doi: 10.1186/1687-2770-2012-145.

[13]

K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.

[14]

F.-D. GeH.-C. Zhou and C.-H. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Applied Mathematics and Computation, 275 (2016), 107-120.  doi: 10.1016/j.amc.2015.11.056.

[15]

I. L. Glicksberg, A further generalization of the Kakutani fixed theorem with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170-174.  doi: 10.2307/2032478.

[16]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter & Co., Berlin, 2001. doi: 10.1515/9783110870893.

[17]

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Second edition, Pergamon Press, Oxford-Elmsford, N.Y., 1982.

[18]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[19]

A. N. Kochubeĭ, Diffusion of fractional order, Differential Equations, 26 (1990), 485-492. 

[20]

A. N. Kochubeĭ, The Cauchy problem for evolution equations of fractional order, Differential Equations, 25 (1989), 967-974. 

[21]

S. Q. Liang and R. Mei, Existence of mild solutions for fractional impulsive neutral evolution equations with nonlocal conditions, Advances in Difference Equations, 2014 (2014), 16 pp. doi: 10.1186/1687-1847-2014-101.

[22]

F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solutions and Fractals, 7 (1996), 1461-1477.  doi: 10.1016/0960-0779(95)00125-5.

[23]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.

[24]

J. Mu, Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions, Bound. Value Probl., 2012 (2012), 12 pp. doi: 10.1186/1687-2770-2012-71.

[25]

R. R. Nigmatullin, Fractional integral and its physical interpretation, Theoretical and Mathematical Physics, 90 Issue 3 (1992), 242–251.

[26]

I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198, Academic Press, Inc., San Diego, CA 1999.

[27]

L. Schwartz, Cours d'Analyse I, Second Edition, Hermann, Paris 1981.

[28]

X.-B. ShuaY. Z. Lai and Y. M. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Analysis, 74 (2011), 2003-2011.  doi: 10.1016/j.na.2010.11.007.

[29]

N. K. Tomar and J. Dabas, Controllability of impulsive fractional order semilinear evolution equations with nonlocal conditions, Journal of Nonlinear Evolution Equations and Applications, 2012 (2012), 57-67. 

[30]

M. Väth, Ideal Spaces, Lect. Notes Math., no. 1664, Springer, Berlin, Heidelberg, 1997.

[31]

I. I. Vrabie, $C_0$-Semigroups and Applications, North-Holland Mathematics Studies, 191. North-Holland Publishing Co., Amsterdam, 2003.

[32]

J. R. WangM. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dynamics of PDE, 8 (2011), 345-361.  doi: 10.4310/DPDE.2011.v8.n4.a3.

[33]

J. R. Wang and A. G. Ibrahim, Existence and controllability results for nonlocal fractional impulsive differential inclusions in Banach spaces, Journal of Function Spaces and Applications, 2013 (2013), Art. ID 518306, 16 pp. doi: 10.1155/2013/518306.

[34]

L. Z. Zhang and Y. Liang, Monotone iterative technique for impulsive fractional evolution equations with noncompact semigroup, Advances in Difference Equations, 2015 (2015), 15 pp. doi: 10.1186/s13662-015-0665-6.

[35]

Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier/Academic Press, London, 2016. doi: doi.

show all references

References:
[1]

K. Aissani and M. Benchohra, Impulsive fractional differential inclusions with infinite delay, Electronic Journal of Differential Equations, 2013 (2013), 13 pp.

[2]

K. BalachandranS. Kiruthika and J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun Nonlinear Sci Numer Simulat, 16 (2011), 1970-1977.  doi: 10.1016/j.cnsns.2010.08.005.

[3]

I. Benedetti, L. Malaguti and V. Taddei, Nonlocal semilinear evolution equations without strong compactness: Theory and applications, Bound. Value Probl., 2013 (2013), 18 pp. doi: 10.1186/1687-2770-2013-60.

[4]

I. Benedetti, V. Obukovskii and V. Taddei, On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space, Journal of Function Spaces, (2015), Art. ID 651359, 10 pp. doi: 10.1155/2015/651359.

[5]

I. BenedettiV. Obukovskii and V. Taddei, On generalized boundary value problems for a class of fractional differential inclusions, Fractional Calculus and Applied Analysis, 20 (2017), 1424-1446.  doi: 10.1515/fca-2017-0075.

[6]

S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math., 39 (1938), 913-944.  doi: 10.2307/1968472.

[7]

A. Chadha and D. N. Pandey, Existence of a mild solution for impulsive neutral fractional differential equations with nonlocal conditions, Differential Equations and Applications, 7 (2015), 151-168.  doi: 10.7153/dea-07-09.

[8]

A. Chauhan and J. Dabas, Existence of mild solutions for impulsive fractional-order semilinear evolution equations with nonlocal conditions, Electronic Journal of Differential Equations, 2011 (2011), 10 pp.

[9]

N. Dunford and J. T. Schwartz, Linear Operators. Part I. General theory, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988.

[10]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.

[11]

I. Ekeland and R. Teman, Convex Anaysis and Variational Problems, Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam-Oxford, American Elsevier Publishing Co., Inc., New York, 1976.

[12]

H. Ergören and A. Kiliçman, Non-local boundary value problems for impulsive fractional integro-differential equations in Banach spaces, Bound. Value Probl., 2012 (2012), 15 pp. doi: 10.1186/1687-2770-2012-145.

[13]

K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.

[14]

F.-D. GeH.-C. Zhou and C.-H. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Applied Mathematics and Computation, 275 (2016), 107-120.  doi: 10.1016/j.amc.2015.11.056.

[15]

I. L. Glicksberg, A further generalization of the Kakutani fixed theorem with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170-174.  doi: 10.2307/2032478.

[16]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter & Co., Berlin, 2001. doi: 10.1515/9783110870893.

[17]

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Second edition, Pergamon Press, Oxford-Elmsford, N.Y., 1982.

[18]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[19]

A. N. Kochubeĭ, Diffusion of fractional order, Differential Equations, 26 (1990), 485-492. 

[20]

A. N. Kochubeĭ, The Cauchy problem for evolution equations of fractional order, Differential Equations, 25 (1989), 967-974. 

[21]

S. Q. Liang and R. Mei, Existence of mild solutions for fractional impulsive neutral evolution equations with nonlocal conditions, Advances in Difference Equations, 2014 (2014), 16 pp. doi: 10.1186/1687-1847-2014-101.

[22]

F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solutions and Fractals, 7 (1996), 1461-1477.  doi: 10.1016/0960-0779(95)00125-5.

[23]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.

[24]

J. Mu, Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions, Bound. Value Probl., 2012 (2012), 12 pp. doi: 10.1186/1687-2770-2012-71.

[25]

R. R. Nigmatullin, Fractional integral and its physical interpretation, Theoretical and Mathematical Physics, 90 Issue 3 (1992), 242–251.

[26]

I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198, Academic Press, Inc., San Diego, CA 1999.

[27]

L. Schwartz, Cours d'Analyse I, Second Edition, Hermann, Paris 1981.

[28]

X.-B. ShuaY. Z. Lai and Y. M. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Analysis, 74 (2011), 2003-2011.  doi: 10.1016/j.na.2010.11.007.

[29]

N. K. Tomar and J. Dabas, Controllability of impulsive fractional order semilinear evolution equations with nonlocal conditions, Journal of Nonlinear Evolution Equations and Applications, 2012 (2012), 57-67. 

[30]

M. Väth, Ideal Spaces, Lect. Notes Math., no. 1664, Springer, Berlin, Heidelberg, 1997.

[31]

I. I. Vrabie, $C_0$-Semigroups and Applications, North-Holland Mathematics Studies, 191. North-Holland Publishing Co., Amsterdam, 2003.

[32]

J. R. WangM. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dynamics of PDE, 8 (2011), 345-361.  doi: 10.4310/DPDE.2011.v8.n4.a3.

[33]

J. R. Wang and A. G. Ibrahim, Existence and controllability results for nonlocal fractional impulsive differential inclusions in Banach spaces, Journal of Function Spaces and Applications, 2013 (2013), Art. ID 518306, 16 pp. doi: 10.1155/2013/518306.

[34]

L. Z. Zhang and Y. Liang, Monotone iterative technique for impulsive fractional evolution equations with noncompact semigroup, Advances in Difference Equations, 2015 (2015), 15 pp. doi: 10.1186/s13662-015-0665-6.

[35]

Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier/Academic Press, London, 2016. doi: doi.

[1]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[2]

Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817

[3]

Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014

[4]

Jinrong Wang, Michal Fečkan, Yong Zhou. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations and Control Theory, 2017, 6 (3) : 471-486. doi: 10.3934/eect.2017024

[5]

Pengyu Chen, Xuping Zhang. Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4681-4695. doi: 10.3934/dcdsb.2020308

[6]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[7]

Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations and Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507

[8]

Poongodi Rathinasamy, Murugesu Rangasamy, Nirmalkumar Rajendran. Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. Evolution Equations and Control Theory, 2017, 6 (4) : 599-613. doi: 10.3934/eect.2017030

[9]

Jan Andres, Luisa Malaguti, Martina Pavlačková. Hartman-type conditions for multivalued Dirichlet problem in abstract spaces. Conference Publications, 2015, 2015 (special) : 38-55. doi: 10.3934/proc.2015.0038

[10]

Shakir Sh. Yusubov, Elimhan N. Mahmudov. Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021182

[11]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021026

[12]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013

[13]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure and Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[14]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[15]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[16]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[17]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[18]

Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022020

[19]

Saïd Abbas, Mouffak Benchohra, John R. Graef. Coupled systems of Hilfer fractional differential inclusions in banach spaces. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2479-2493. doi: 10.3934/cpaa.2018118

[20]

Tomomi Yokota, Kentarou Yoshii. Solvability in abstract evolution equations with countable time delays in Banach spaces: Global Lipschitz perturbation. Evolution Equations and Control Theory, 2021, 10 (4) : 689-699. doi: 10.3934/eect.2020086

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (334)
  • HTML views (243)
  • Cited by (1)

[Back to Top]