We study some properties of mean curvature flow solitons in general Riemannian manifolds and in warped products, with emphasis on constant curvature and Schwarzschild type spaces. We focus on splitting and rigidity results under various geometric conditions, ranging from the stability of the soliton to the fact that the image of its Gauss map be contained in suitable regions of the sphere. We also investigate the case of entire graphs.
Citation: |
[1] |
L. J. Alías, J. H. de Lira and M. Rigoli, Mean curvature flow solitons in the presence of conformal vector fields, preprint, arXiv: 1707.07132.
![]() |
[2] |
L. J. Alías, P. Mastrolia and M. Rigoli, Maximum Principles and Geometric Applications, Springer Monographs in Mathematics, Springer, Cham, 2016.
doi: 10.1007/978-3-319-24337-5.![]() ![]() ![]() |
[3] |
S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differential Equations, 2 (1994), 101-111.
doi: 10.1007/BF01234317.![]() ![]() ![]() |
[4] |
C. Bao and Y. G. Shi, Gauss maps of translating solitons of mean curvature flow, Proc. Amer. Math. Soc., 142 (2014), 4333-4339.
doi: 10.1090/S0002-9939-2014-12209-X.![]() ![]() ![]() |
[5] |
J. Barta, Sur la vibration fundamentale d'une membrane, C. R. Acad. Sci., 204 (1937), 472-473.
![]() |
[6] |
G. Pacelli Bessa, L. F. Pessoa and M. Rigoli, Vanishing theorems, higher order mean curvatures and index estimates for self-shrinkers, Israel J. Math., 226 (2018), 703-736.
doi: 10.1007/s11856-018-1703-3.![]() ![]() ![]() |
[7] |
B. Bianchini, L. Mari, P. Pucci and M. Rigoli, On the interplay among maximum principles, compact support principles and Keller-Osserman conditions on manifolds, preprint, arXiv: 1801.02102.
![]() |
[8] |
B. Bianchini, L. Mari and M. Rigoli, Spectral radius, index estimates for Schrödinger operators and geometric applications, J. Funct. Anal., 256 (2009), 1769-1820.
doi: 10.1016/j.jfa.2009.01.021.![]() ![]() ![]() |
[9] |
B. Bianchini, L. Mari and M. Rigoli, Yamabe type equations with sign-changing nonlinearities on non-compact Riemannian manifolds, J. Funct. Anal., 268 (2015), 1-72.
doi: 10.1016/j.jfa.2014.10.016.![]() ![]() ![]() |
[10] |
B. Bianchini, L. Mari and M. Rigoli, On some aspects of oscillation theory and geometry, Mem. Amer. Math. Soc., 225 (2013).
doi: 10.1090/s0065-9266-2012-00681-2.![]() ![]() ![]() |
[11] |
J.-P. Bourguignon, The "magic" of Weitzenböck formulas, Variational methods (Paris, 1988), Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 4 (1990), 251–271.
![]() ![]() |
[12] |
R. Brooks, A relation between growth and the spectrum of the Laplacian, Math. Z., 178 (1981), 501-508.
doi: 10.1007/BF01174771.![]() ![]() ![]() |
[13] |
H.-D. Cao, Y. Shen and S. H. Zhu, The structure of stable minimal hypersurfaces in Rn+1, Math. Res. Lett., 4 (1997), 637-644.
doi: 10.4310/MRL.1997.v4.n5.a2.![]() ![]() ![]() |
[14] |
X. Cheng and D. T. Zhou, Volume estimate about shrinkers, Proc. Amer. Math. Soc., 141 (2013), 687-696.
doi: 10.1090/S0002-9939-2012-11922-7.![]() ![]() ![]() |
[15] |
X. Cheng, T. Mejia and D. T. Zhou, Simons-type equation for f-minimal hypersurfaces and applications, J. Geom. Anal., 25 (2015), 2667-2686.
doi: 10.1007/s12220-014-9530-1.![]() ![]() ![]() |
[16] |
J. Clutterbuck, O. C. Schnürer and F. Schulze, Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations, 29 (2007), 281-293.
doi: 10.1007/s00526-006-0033-1.![]() ![]() ![]() |
[17] |
T. H. Colding and W. P. Minicozzi II, Generic mean curvature flow Ⅰ: Generic singularities, Ann. of Math., 175 (2012), 755-833.
doi: 10.4007/annals.2012.175.2.7.![]() ![]() ![]() |
[18] |
B. Devyver, On the finiteness of the Morse index for Schrödinger operators, Manuscripta Math., 139 (2012), 249-271.
doi: 10.1007/s00229-011-0522-1.![]() ![]() ![]() |
[19] |
Q. Ding, Y. L. Xin and L. Yang, The rigidity theorems of self shrinkers via Gauss maps, Adv. Math., 303 (2016), 151-174.
doi: 10.1016/j.aim.2016.08.019.![]() ![]() ![]() |
[20] |
M. P. do Carmo, H. B. Lawson and Jr ., On Alexandrov-Bernstein theorems in hyperbolic space, Duke Math. J., 50 (1983), 995-1003.
doi: 10.1215/S0012-7094-83-05041-X.![]() ![]() ![]() |
[21] |
A. Farina, L. Mari and E. Valdinoci, Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds, Comm. Partial Differential Equations, 38 (2013), 1818-1862.
doi: 10.1080/03605302.2013.795969.![]() ![]() ![]() |
[22] |
D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math., 82 (1985), 121-132.
doi: 10.1007/BF01394782.![]() ![]() ![]() |
[23] |
D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math., 33 (1980), 199-211.
doi: 10.1002/cpa.3160330206.![]() ![]() ![]() |
[24] |
S. Fornari and J. Ripoll, Killing fields, mean curvature, translation maps, Illinois J. Math, 48 (2004), 1385-1403.
doi: 10.1215/ijm/1258138517.![]() ![]() ![]() |
[25] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977.
![]() ![]() |
[26] |
T. Hasanis and D. Koutroufiotis, A property of complete minimal surfaces, Trans. Amer. Math. Soc., 281 (1984), 833-843.
doi: 10.1090/S0002-9947-1984-0722778-5.![]() ![]() ![]() |
[27] |
Y. Higuchi, A remark on exponential growth and the spectrum of the Laplacian, Kodai Math. J., 24 (2001), 42-47.
doi: 10.2996/kmj/1106157294.![]() ![]() ![]() |
[28] |
D. A. Hoffman, R. Osserman and R. Schoen, On the Gauss map of complete surfaces of constant mean curvature in R3 and R4, Comment. Math. Helv., 57 (1982), 519-531.
doi: 10.1007/BF02565874.![]() ![]() ![]() |
[29] |
D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math., 27 (1974), 715-727.
doi: 10.1002/cpa.3160270601.![]() ![]() ![]() |
[30] |
D. Impera and M. Rimoldi, Stability properties and topology at infinity of f-minimal hypersurfaces, Geom. Dedicata, 178 (2015), 21-47.
doi: 10.1007/s10711-014-9999-6.![]() ![]() ![]() |
[31] |
D. Impera and M. Rimoldi, Rigidity results and topology at infinity of translating solitons of the mean curvature flow, Commun. Contemp. Math., 19 (2017), 1750002, 21 pp.
doi: 10.1142/S021919971750002X.![]() ![]() ![]() |
[32] |
M. Kanai, On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math., 6 (1983), 143-151.
doi: 10.3836/tjm/1270214332.![]() ![]() ![]() |
[33] |
P. W.-K. Li, Harmonic Functions and Applications to Complete Manifolds, XIV Escola de Geometria Diferencial, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2006.
![]() ![]() |
[34] |
P. Li and J. P. Wang, Minimal hypersurfaces with finite index, Math. Res. Lett., 9 (2002), 95-103.
doi: 10.4310/MRL.2002.v9.n1.a7.![]() ![]() ![]() |
[35] |
L. Mari, P. Mastrolia and M. Rigoli, A note on Killing fields and CMC hypersurfaces, J. Math. Anal. Appl., 431 (2015), 919-934.
doi: 10.1016/j.jmaa.2015.06.016.![]() ![]() ![]() |
[36] |
W. F. Moss and J. Piepenbrink, Positive solutions of elliptic equations, Pacific J. Math., 75 (1978), 219-226.
doi: 10.2140/pjm.1978.75.219.![]() ![]() ![]() |
[37] |
M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333-340.
doi: 10.2969/jmsj/01430333.![]() ![]() ![]() |
[38] |
B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983.
![]() ![]() |
[39] |
J. Piepenbrink, Nonoscillatory elliptic equations, J. Differential Equations, 15 (1974), 541-550.
doi: 10.1016/0022-0396(74)90072-2.![]() ![]() ![]() |
[40] |
S. Pigola, M. Rigoli and A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Progress in Mathematics, 266. Birkhäuser Verlag, Basel, 2008.
![]() ![]() |
[41] |
M. Rigoli and A. G. Setti, Liouville type theorems for ϕ-subharmonic functions, Rev. Mat. Iberoamericana, 17 (2001), 471-520.
doi: 10.4171/RMI/302.![]() ![]() ![]() |
[42] |
A. Rocha, Essential spectrum of the weighted Laplacian on noncompact manifolds and applications, Geom. Dedicata, 186 (2017), 197-219.
doi: 10.1007/s10711-016-0186-9.![]() ![]() ![]() |
[43] |
K. Smoczyk, A relation between mean curvature flow solitons and minimal submanifolds, Math. Nachr, 229 (2001), 175-186.
doi: 10.1002/1522-2616(200109)229:1<175::AID-MANA175>3.0.CO;2-H.![]() ![]() ![]() |
[44] |
Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc., 117 (1965), 251-275.
doi: 10.1090/S0002-9947-1965-0174022-6.![]() ![]() ![]() |
[45] |
X.-J. Wang, Convex solutions to the mean curvature flow, Ann. of Math. (2), 173 (2011), 1185–1239.
doi: 10.4007/annals.2011.173.3.1.![]() ![]() ![]() |