American Institute of Mathematical Sciences

July  2020, 13(7): 2033-2045. doi: 10.3934/dcdss.2020156

On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions

 Università di Cagliari, Dipartimento di Matematica e Informatica, Viale Merello 92, 09123 Cagliari, Italy

*Corresponding author: giuseppe.viglialoro@unica.it

The authors dedicate this paper to Professor Patrizia Pucci on the occasion of her sixty-fifth birthday

Received  August 2018 Revised  December 2018 Published  November 2019

In this paper we analyze the porous medium equation
 $$$u_t = \Delta u^m + a\int_\Omega u^p-b u^q -c\lvert\nabla\sqrt{u}\rvert^2 \quad {\rm{in}}\quad \Omega \times I,\;\;\;\;\;\;(◇)$$$
where
 $\Omega$
is a bounded and smooth domain of
 $\mathbb R^N$
, with
 $N\geq 1$
, and
 $I = [0,t^*)$
is the maximal interval of existence for
 $u$
. The constants
 $a,b,c$
are positive,
 $m,p,q$
proper real numbers larger than 1 and the equation is complemented with nonlinear boundary conditions involving the outward normal derivative of
 $u$
. Under some hypotheses on the data, including intrinsic relations between
 $m,p$
and
 $q$
, and assuming that for some positive and sufficiently regular function
 $u_0({\bf x})$
the Initial Boundary Value Problem (IBVP) associated to (◇) possesses a positive classical solution
 $u = u({\bf x},t)$
on
 $\Omega \times I$
:
 $\triangleright$
when
 $p>q$
and in 2- and 3-dimensional domains, we determine a lower bound of
 $t^*$
for those
 $u$
becoming unbounded in
 $L^{m(p-1)}(\Omega)$
at such
 $t^*$
;
 $\triangleright$
when
 $p and in $ N $-dimensional settings, we establish a global existence criterion for $ u $. Citation: Monica Marras, Nicola Pintus, Giuseppe Viglialoro. On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2033-2045. doi: 10.3934/dcdss.2020156 References:  [1] M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London. Math. Soc. (2), 74 (2006), 453-474. doi: 10.1112/S0024610706023015. [2] F. Andreu, J. M. Mazón, F. Simondon and J. Toledo, Blow-up for a class of nonlinear parabolic problems, Asymptot. Anal., 29 (2002), 143-155. [3] D. G. Aronson, The porous medium equation, Springer Berlin Heidelberg, Berlin, Heidelberg, (1986), 1–46. [4] C. Bandle and H. Brunner, Blowup in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22. doi: 10.1016/S0377-0427(98)00100-9. [5] V. A. Galaktionov, A boundary value problem for the nonlinear parabolic equation$u_{t} = \Delta u^{\sigma +1}+u^{\beta}$, Differentsial'nye Uravneniya, 17 (1981), 836–842,956. [6] V. A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita's exponents, Proc. Roy. Soc. Edinburgh: Section A Mathematics, 124 (1994), 517-525. doi: 10.1017/S0308210500028766. [7] V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhaǐlov and A. A. Samarskiǐ, On unbounded solutions of the Cauchy problem for the parabolic equation$u_t = \nabla (u^\sigma\nabla u)+u^\beta$, Dokl. Akad. Nauk SSSR, 252 (1980), 1362-1364. [8] C. Grant, Theory of Ordinary Differential Equations, CreateSpace Independent Publishing Platform. [9] M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosc., 33 (1977), 35-49. doi: 10.1016/0025-5564(77)90062-1. [10] H. Kielhöfer, Halbgruppen und semilineare anfangs-randwertprobleme, Manuscripta Math., 12 (1974), 121-152. doi: 10.1007/BF01168647. [11] N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, Mathematics and its Applications (Soviet Series), 7. D. Reidel Publishing Co., Dordrecht, 1987. doi: 10.1007/978-94-010-9557-0. [12] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23. American Mathematical Society, 1988. [13] H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev., 32 (1990), 262-288. doi: 10.1137/1032046. [14] T. Li, N. Pintus and G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70: 86 (2019), 1–18. doi: 10.1007/s00033-019-1130-2. [15] F. C. Li and C. H. Xie, Global existence and blow-up for a nonlinear porous medium equation, Appl. Math. Lett., 16 (2003), 185-192. doi: 10.1016/S0893-9659(03)80030-7. [16] Y. Liu, Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition, Comput. Math. Appl., 66 (2013), 2092-2095. doi: 10.1016/j.camwa.2013.08.024. [17] Y. Liu, Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Model., 57 (2013), 926-931. doi: 10.1016/j.mcm.2012.10.002. [18] M. Marras, S. Vernier-Piro and G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Math. Method Appl. Sci., 39 (2016), 2787-2798. doi: 10.1002/mma.3728. [19] M. Marras and G. Viglialoro, Blow-up time of a general Keller-Segel system with source and damping terms, C. R. Acad. Bulgare Sci., 69: 6 (2016), 687–696 [20] M. Marras and G. Viglialoro, Boundedness in a fully parabolic chemotaxis-consumption system with nonlinear diffusion and sensitivity, and logistic source, Math. Nachr., 291 (2018), 2318-2333. doi: 10.1002/mana.201700172. [21] L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition. II, Nonlinear Anal. Theory Methods Appl., 73 (2010), 971-978. doi: 10.1016/j.na.2010.04.023. [22] L. E. Payne, G. Philippin and P. W. Schaefer, Bounds for blow-up time in nonlinear parabolic problems, J. Math. Anal. Appl., 338 (2008), 438-447. doi: 10.1016/j.jmaa.2007.05.022. [23] L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205. doi: 10.1016/j.jmaa.2006.06.015. [24] L. E. Payne and P. W. Schaefer, Blow-up in parabolic problems under Robin boundary conditions, Appl. Anal., 87 (2008), 699-707. doi: 10.1080/00036810802189662. [25] L. E. Payne, G. A. Philippin and V. Proytcheva, Continuous dependence on the geometry and on the initial time for a class of parabolic problems. I, Math. Methods Appl. Sci., 30 (2007), 1885-1898. doi: 10.1002/mma.877. [26] P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007. [27] P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Basel, 2007. [28] P. W. Schaefer, Lower bounds for blow-up time in some porous medium problems, Dynamic Systems and Applications, Dynamic, Atlanta, GA, 5 (2008), 442-445. [29] P. W. Schaefer, Blow-up phenomena in some porous medium problems, Dynam. Systems Appl., 18 (2009), 103-110. [30] J. C. Song, Lower bounds for the blow-up time in a non-local reaction-diffusion problem, Appl. Math. Lett., 24 (2011), 793-796. doi: 10.1016/j.aml.2010.12.042. [31] P. Souplet, Finite time blow-up for a non-linear parabolic equation with a gradient term and applications, Math. Methods Appl. Sci., 19 (1996), 1317-1333. doi: 10.1002/(SICI)1099-1476(19961110)19:16<1317::AID-MMA835>3.0.CO;2-M. [32] J. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. [33] G. Viglialoro, Blow-up time of a Keller-Segel-type system with Neumann and Robin boundary conditions, Diff. Integral Equ., 29 (2016), 359-376. [34] G. Viglialoro, Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source, Nonlinear Anal. Real World Appl., 34 (2017), 520-535. doi: 10.1016/j.nonrwa.2016.10.001. [35] G. Viglialoro and T. Woolley, Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth, Discrete Continuous Dyn. Syst. Ser. B, 22 (2018), 3023-3045. doi: 10.3934/dcdsb.2017199. [36] G. Viglialoro and T. E. Woolley, Boundedness in a parabolic-elliptic chemotaxis system with nonlinear diffusion and sensitivity and logistic source, Math. Methods Appl. Sci., 41 (2018), 1809-1824. doi: 10.1002/mma.4707. [37] M. X. Wang and Y. M. Wang, Properties of positive solutions for non-local reaction-diffusion problems, Math. Method. Appl. Sc., 19 (1996), 1141-1156. doi: 10.1002/(SICI)1099-1476(19960925)19:14<1141::AID-MMA811>3.0.CO;2-9. show all references References:  [1] M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London. Math. Soc. (2), 74 (2006), 453-474. doi: 10.1112/S0024610706023015. [2] F. Andreu, J. M. Mazón, F. Simondon and J. Toledo, Blow-up for a class of nonlinear parabolic problems, Asymptot. Anal., 29 (2002), 143-155. [3] D. G. Aronson, The porous medium equation, Springer Berlin Heidelberg, Berlin, Heidelberg, (1986), 1–46. [4] C. Bandle and H. Brunner, Blowup in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22. doi: 10.1016/S0377-0427(98)00100-9. [5] V. A. Galaktionov, A boundary value problem for the nonlinear parabolic equation$u_{t} = \Delta u^{\sigma +1}+u^{\beta}$, Differentsial'nye Uravneniya, 17 (1981), 836–842,956. [6] V. A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita's exponents, Proc. Roy. Soc. Edinburgh: Section A Mathematics, 124 (1994), 517-525. doi: 10.1017/S0308210500028766. [7] V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhaǐlov and A. A. Samarskiǐ, On unbounded solutions of the Cauchy problem for the parabolic equation$u_t = \nabla (u^\sigma\nabla u)+u^\beta\$, Dokl. Akad. Nauk SSSR, 252 (1980), 1362-1364. [8] C. Grant, Theory of Ordinary Differential Equations, CreateSpace Independent Publishing Platform. [9] M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosc., 33 (1977), 35-49.  doi: 10.1016/0025-5564(77)90062-1. [10] H. Kielhöfer, Halbgruppen und semilineare anfangs-randwertprobleme, Manuscripta Math., 12 (1974), 121-152.  doi: 10.1007/BF01168647. [11] N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, Mathematics and its Applications (Soviet Series), 7. D. Reidel Publishing Co., Dordrecht, 1987. doi: 10.1007/978-94-010-9557-0. [12] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23. American Mathematical Society, 1988. [13] H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev., 32 (1990), 262-288.  doi: 10.1137/1032046. [14] T. Li, N. Pintus and G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70: 86 (2019), 1–18. doi: 10.1007/s00033-019-1130-2. [15] F. C. Li and C. H. Xie, Global existence and blow-up for a nonlinear porous medium equation, Appl. Math. Lett., 16 (2003), 185-192.  doi: 10.1016/S0893-9659(03)80030-7. [16] Y. Liu, Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition, Comput. Math. Appl., 66 (2013), 2092-2095.  doi: 10.1016/j.camwa.2013.08.024. [17] Y. Liu, Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Model., 57 (2013), 926-931.  doi: 10.1016/j.mcm.2012.10.002. [18] M. Marras, S. Vernier-Piro and G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Math. Method Appl. Sci., 39 (2016), 2787-2798.  doi: 10.1002/mma.3728. [19] M. Marras and G. Viglialoro, Blow-up time of a general Keller-Segel system with source and damping terms, C. R. Acad. Bulgare Sci., 69: 6 (2016), 687–696 [20] M. Marras and G. Viglialoro, Boundedness in a fully parabolic chemotaxis-consumption system with nonlinear diffusion and sensitivity, and logistic source, Math. Nachr., 291 (2018), 2318-2333.  doi: 10.1002/mana.201700172. [21] L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition. II, Nonlinear Anal. Theory Methods Appl., 73 (2010), 971-978.  doi: 10.1016/j.na.2010.04.023. [22] L. E. Payne, G. Philippin and P. W. Schaefer, Bounds for blow-up time in nonlinear parabolic problems, J. Math. Anal. Appl., 338 (2008), 438-447.  doi: 10.1016/j.jmaa.2007.05.022. [23] L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205.  doi: 10.1016/j.jmaa.2006.06.015. [24] L. E. Payne and P. W. Schaefer, Blow-up in parabolic problems under Robin boundary conditions, Appl. Anal., 87 (2008), 699-707.  doi: 10.1080/00036810802189662. [25] L. E. Payne, G. A. Philippin and V. Proytcheva, Continuous dependence on the geometry and on the initial time for a class of parabolic problems. I, Math. Methods Appl. Sci., 30 (2007), 1885-1898.  doi: 10.1002/mma.877. [26] P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007. [27] P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Basel, 2007. [28] P. W. Schaefer, Lower bounds for blow-up time in some porous medium problems, Dynamic Systems and Applications, Dynamic, Atlanta, GA, 5 (2008), 442-445. [29] P. W. Schaefer, Blow-up phenomena in some porous medium problems, Dynam. Systems Appl., 18 (2009), 103-110. [30] J. C. Song, Lower bounds for the blow-up time in a non-local reaction-diffusion problem, Appl. Math. Lett., 24 (2011), 793-796.  doi: 10.1016/j.aml.2010.12.042. [31] P. Souplet, Finite time blow-up for a non-linear parabolic equation with a gradient term and applications, Math. Methods Appl. Sci., 19 (1996), 1317-1333.  doi: 10.1002/(SICI)1099-1476(19961110)19:16<1317::AID-MMA835>3.0.CO;2-M. [32] J. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. [33] G. Viglialoro, Blow-up time of a Keller-Segel-type system with Neumann and Robin boundary conditions, Diff. Integral Equ., 29 (2016), 359-376. [34] G. Viglialoro, Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source, Nonlinear Anal. Real World Appl., 34 (2017), 520-535.  doi: 10.1016/j.nonrwa.2016.10.001. [35] G. Viglialoro and T. Woolley, Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth, Discrete Continuous Dyn. Syst. Ser. B, 22 (2018), 3023-3045.  doi: 10.3934/dcdsb.2017199. [36] G. Viglialoro and T. E. Woolley, Boundedness in a parabolic-elliptic chemotaxis system with nonlinear diffusion and sensitivity and logistic source, Math. Methods Appl. Sci., 41 (2018), 1809-1824.  doi: 10.1002/mma.4707. [37] M. X. Wang and Y. M. Wang, Properties of positive solutions for non-local reaction-diffusion problems, Math. Method. Appl. Sc., 19 (1996), 1141-1156.  doi: 10.1002/(SICI)1099-1476(19960925)19:14<1141::AID-MMA811>3.0.CO;2-9.
 [1] Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 [2] Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721 [3] Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519 [4] Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255 [5] Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001 [6] Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182 [7] Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63 [8] Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029 [9] Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183 [10] Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032 [11] Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez. Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension. Communications on Pure and Applied Analysis, 2022, 21 (3) : 891-925. doi: 10.3934/cpaa.2022003 [12] Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083 [13] Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010 [14] Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126 [15] Alessio Fiscella, Enzo Vitillaro. Local Hadamard well--posedness and blow--up for reaction--diffusion equations with non--linear dynamical boundary conditions. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5015-5047. doi: 10.3934/dcds.2013.33.5015 [16] Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135 [17] Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333 [18] Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535 [19] Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347 [20] W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655

2020 Impact Factor: 2.425