Article Contents
Article Contents

# Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy

• * Corresponding author: Runzhang Xu

Dedicated to Professor Patrizia Pucci on the occasion of her 65th birthday

R. Xu is partially supported by the National Natural Science Foundation of China (11871017), the China Postdoctoral Science Foundation(2013M540270) and the Fundamental Research Funds for the Central Universities. M. Zhang is partially supported by the National Natural Science Foundation of China (11871199)

• In this paper, we study blow up and blow up time of solutions for initial boundary value problem of Kirchhoff-type wave equations involving the fractional Laplacian

\left\{ \begin{align} & {{u}_{tt}}+[u]_{s}^{2(\theta -1)}{{(-\Delta )}^{s}}u=f(u),\ \ \ \ \text{in}\ \Omega \times {{\mathbb{R}}^{+}}, \\ & u(x,0)={{u}_{0}},\ \ {{u}_{t}}(x,0)={{u}_{1}},\ \ \ \ \ \ \text{in}\ \Omega , \\ & u=0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{in}\ ({{\mathbb{R}}^{N}}\backslash \Omega )\times \mathbb{R}_{0}^{+}, \\ \end{align} \right.

where $[u]_s$ is the Gagliardo seminorm of $u$, $s\in(0, 1)$, $\theta\in[1, 2_s^*/2)$ with $2_s^* = \frac{2N}{N-2s}$, $(-\Delta)^s$ is the fractional Laplacian operator, $f(u)$ is a differential function satisfying certain assumptions, $\Omega\subset\mathbb{R}^N$ is a bounded domain with Lipschitz boundary $\partial \Omega$. By introducing a new auxiliary function and an adapted concavity method, we establish some sufficient conditions on initial data such that the solutions blow up in finite time for the arbitrary positive initial energy. Moreover, as $f(u) = |u|^{p-1}u$, we estimate the upper and lower bounds for blow up time with arbitrary positive energy.

Mathematics Subject Classification: Primary: 35R11, 35L05; Secondary: 47G20.

 Citation:

•  [1] D. Applebaum, Lévy processes from probability to finance quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347. [2] G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x. [3] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016. [4] G. M. Bisci and V. D. Rǎdulescu, Applications of local linking to nonlocal Neumann problems, Commun. Contemp. Math., 17 (2015), 1450001, 17 pp. doi: 10.1142/S0219199714500011. [5] G. M. Bisci and V. D. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5. [6] G. M. Bisci,  V. D. Rǎdulescu and  R. Servadei,  Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397. [7] G. M. Bisci and L. Vilasi, On a fractional degenerate Kirchhoff-type problem, Commun. Contemp. Math., 19 (2017), 1550088, 23 pp. doi: 10.1142/S0219199715500881. [8] M. Bonforte, Y. Sire and J. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725. [9] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306. [10] M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional $p$-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016), 2099-2129.  doi: 10.1007/s10231-016-0555-x. [11] P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.  doi: 10.1007/BF02100605. [12] A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011. [13] Y. Q. Fu and P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qual. Theory Differ. Equ., 70 (2016), 17 pp. doi: 10.14232/ejqtde.2016.1.70. [14] F. Gazzola and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18 (2005), 961-990. [15] F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207.  doi: 10.1016/j.anihpc.2005.02.007. [16] M. Korpusov, Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy, Electron. J. Differential Equations, 2012 (2012), 1-10. [17] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108. [18] W. Lian, M. S. Ahmed and R. Z. Xu, Global existence and blow up of solution for semilinear hyperbolic equation with logarithmic nonlinearity, Nonlinear Anal., 184 (2019), 239-257.  doi: 10.1016/j.na.2019.02.015. [19] W. Lian, R. Z. Xu, V. D. Rǎdulescu, Y. B. Yang and N. Zhao, Global well-posedness for a class of fourth order nonlinear strongly damped wave equations, Adv. Calc. Var., (2019). [20] W. Lian and R. Z. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016. [21] Y. C. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7. [22] Y. C. Liu and R. Z. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 171-189.  doi: 10.3934/dcdsb.2007.7.171. [23] T. Matsuyama and R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl., 204 (1996), 729-753.  doi: 10.1006/jmaa.1996.0464. [24] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004. [25] N. Pan, P. Pucci and B. L. Zhang, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, J. Evol. Equ., 18 (2018), 385-409.  doi: 10.1007/s00028-017-0406-2. [26] L. E. Pany and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595. [27] N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Nonlinear Analysis-Theory and Methods, Springer Monographs in Mathematics. Springer, Cham, 2019. doi: 10.1007/978-3-030-03430-6. [28] P. Pucci and V. D. Rǎdulescu, Progress in nonlinear Kirchhoff problems, Nonlinear Anal., 186 (2019), 1-5.  doi: 10.1016/j.na.2019.02.022. [29] P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879. [30] P. Pucci, M. Q. Xiang and B. L. Zhang, A diffusion problem of Kirchhoff type involving the nonlocal fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 37 (2017), 4035-4051.  doi: 10.3934/dcds.2017171. [31] R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032. [32] J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885.  doi: 10.3934/dcdss.2014.7.857. [33] J. L. Vázquez, Existence of maximal solutions for some very singular nonlinear fractional diffusion equations in 1D, J. Evol. Equ., 16 (2016), 723-758.  doi: 10.1007/s00028-016-0340-8. [34] M. Q. Xiang, B. L. Zhang and V. D. Rǎdulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional $p$-Laplacian, Nonlinearity, 29 (2016), 3186-3205.  doi: 10.1088/0951-7715/29/10/3186. [35] R. Z. Xu, Initial boundary value problem of semilinear hyperbolic equations and parabolic equations with critical initial data, Quar. Appl. Math., 68 (2010), 459-468.  doi: 10.1090/S0033-569X-2010-01197-0. [36] R. Z. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010. [37] R. Z. Xu, M. Y. Zhang, S. H. Chen, Y. B. Yang and J. H. Shen, The initial-boundary value problems for a class of sixth order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.  doi: 10.3934/dcds.2017244. [38] R. Z. Xu, Y. X. Chen, Y. B. Yang, S. H. Chen, J. H. Shen, T. Yu and Z. S. Xu, Global well-posedness of semilinear hyperbolic equations, parabolic equations and schrodinger equations, Electron. J. Differential Equations, 55 (2018), 52 pp. doi: 10.3934/dcds.2017244. [39] R. Z. Xu, X. C. Wang and Y. B. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176-181.  doi: 10.1016/j.aml.2018.03.033. [40] Y. B. Yang and R. Z. Xu, Finite time blowup for nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Appl. Math. Lett., 77 (2018), 21-26.  doi: 10.1016/j.aml.2017.09.014. [41] R. Z. Xu, X. C. Wang, Y. B. Yang and S. H. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503, 27 pp. doi: 10.1063/1.5006728. [42] R. Z. Xu, W. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., (2019), https://doi.org/10.1007/s11425-017-9280-x. doi: 10.1007/s11425-017-9280-x. [43] T. Yamazaki, Scattering for a quasilinear hyperbolic equation of Kirchhoff type, J. Differential Equations, 143 (1998), 1-59.  doi: 10.1006/jdeq.1997.3372. [44] B. L. Zhang, V. D. Rǎdulescu and L. Wang, Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 1061-1081.  doi: 10.1080/17476933.2015.1005612.