-
Previous Article
Existence of minimizers for some quasilinear elliptic problems
- DCDS-S Home
- This Issue
-
Next Article
Fractional Ostrowski-Sugeno Fuzzy univariate inequalities
Global solutions of continuous coagulation–fragmentation equations with unbounded coefficients
1. | Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa |
2. | Institute of Mathematics, Łódź University of Technology, Łódź, Poland |
In this paper we prove the existence of global classical solutions to continuous coagulation–fragmentation equations with unbounded coefficients under the sole assumption that the coagulation rate is dominated by a power of the fragmentation rate, thus improving upon a number of recent results by not requiring any polynomial growth bound for either rate. This is achieved by proving a new result on the analyticity of the fragmentation semigroup and then using its regularizing properties to prove the local and then, under a stronger assumption, the global classical solvability of the coagulation–fragmentation equation considered as a semilinear perturbation of the linear fragmentation equation. Furthermore, we show that weak solutions of the coagulation–fragmentation equation, obtained by the weak compactness method, coincide with the classical local in time solutions provided the latter exist.
References:
[1] |
M. Aizenman and T. A. Bak,
Convergence to equilibrium in a system of reacting polymers, Comm. Math. Phys., 65 (1079), 203-230.
doi: 10.1007/BF01197880. |
[2] |
W. Arendt and A. Rhandi,
Perturbation of positive semigroups, Arch. Math. (Basel), 56 (1991), 107-119.
doi: 10.1007/BF01200341. |
[3] |
J. M. Ball and J. Carr,
The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Statist. Phys., 61 (1990), 203-234.
doi: 10.1007/BF01013961. |
[4] |
J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006. |
[5] |
J. Banasiak, W. Lamb and P. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Volume I & II, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2019.
![]() |
[6] |
J. Banasiak, L. O. Joel and S. Shindin, The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation, Kinetic and Related Models, 12 (2019), 1069–1092, arXiv: 1809.00046. |
[7] |
J. Banasiak and W. Lamb,
Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl., 391 (2012), 312-322.
doi: 10.1016/j.jmaa.2012.02.002. |
[8] |
J. Banasiak, W. Lamb and M. Langer,
Strong fragmentation and coagulation with power-law rates, J. Engrg. Math., 82 (2013), 199-215.
doi: 10.1007/s10665-012-9596-3. |
[9] |
R. Becker and W. Döring,
Kinetische behandlung der keimbildung in übersättigten dämpfen, Annalen der Physik, 416 (1935), 719-752.
|
[10] |
J. Bergh and J. Löfström, Interpolation Spaces: An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. |
[11] |
J. Bertoin, Random Fragmentation and Coagulation Processes, Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511617768.![]() ![]() ![]() |
[12] |
P. J. Blatz and A. V. Tobolsky,
Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena, The Journal of Physical Chemistry, 49 (1945), 77-80.
doi: 10.1021/j150440a004. |
[13] |
P. B. Dubovskiǐ and I. W. Stewart,
Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.
doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q. |
[14] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000. |
[15] |
M. Escobedo, S. Mischler and B. Perthame,
Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231 (2002), 157-188.
doi: 10.1007/s00220-002-0680-9. |
[16] |
M. Escobedo, P. Laurençot, S. Mischler and B. Perthame,
Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), 143-174.
doi: 10.1016/S0022-0396(03)00134-7. |
[17] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. |
[18] |
P. Laurençot and S. Mischler,
From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.
doi: 10.1017/S0308210502000598. |
[19] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[20] |
E. D. McGrady and R. M. Ziff,
"Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892-895.
doi: 10.1103/PhysRevLett.58.892. |
[21] |
Z. A. Melzak,
A scalar transport equation, Trans. Amer. Math. Soc., 85 (1957), 547-560.
doi: 10.1090/S0002-9947-1957-0087880-6. |
[22] |
H. Müller, Zur allgemeinen theorie der raschen koagulation, Fortschrittsberichte über Kolloide und Polymere, 27 (1928), 223–250. |
[23] |
M. v. Smoluchowski, Drei vortrage über diffusion, brownsche bewegung und koagulation von kolloidteilchen, Zeitschrift für Physik, 17 (1916), 557–585. |
[24] |
M. v. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift für Physikalische Chemie, 92 (1917), 129–168.
doi: 10.1515/zpch-1918-9209. |
[25] |
I. W. Stewart,
A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.
doi: 10.1002/mma.1670110505. |
[26] |
I. W. Stewart,
Density conservation for a coagulation equation, Z. Angew. Math. Phys., 42 (1991), 746-756.
doi: 10.1007/BF00944770. |
[27] |
R. D. Vigil and R. M. Ziff,
On the scaling theory of two-component aggregation, Chemical Engineering Science, 53 (1998), 1725-1729.
doi: 10.1016/S0009-2509(98)00016-5. |
[28] |
J. Voigt,
On the perturbation theory for strongly continuous semigroups, Math. Ann., 229 (1977), 163-171.
doi: 10.1007/BF01351602. |
show all references
References:
[1] |
M. Aizenman and T. A. Bak,
Convergence to equilibrium in a system of reacting polymers, Comm. Math. Phys., 65 (1079), 203-230.
doi: 10.1007/BF01197880. |
[2] |
W. Arendt and A. Rhandi,
Perturbation of positive semigroups, Arch. Math. (Basel), 56 (1991), 107-119.
doi: 10.1007/BF01200341. |
[3] |
J. M. Ball and J. Carr,
The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Statist. Phys., 61 (1990), 203-234.
doi: 10.1007/BF01013961. |
[4] |
J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006. |
[5] |
J. Banasiak, W. Lamb and P. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Volume I & II, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2019.
![]() |
[6] |
J. Banasiak, L. O. Joel and S. Shindin, The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation, Kinetic and Related Models, 12 (2019), 1069–1092, arXiv: 1809.00046. |
[7] |
J. Banasiak and W. Lamb,
Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl., 391 (2012), 312-322.
doi: 10.1016/j.jmaa.2012.02.002. |
[8] |
J. Banasiak, W. Lamb and M. Langer,
Strong fragmentation and coagulation with power-law rates, J. Engrg. Math., 82 (2013), 199-215.
doi: 10.1007/s10665-012-9596-3. |
[9] |
R. Becker and W. Döring,
Kinetische behandlung der keimbildung in übersättigten dämpfen, Annalen der Physik, 416 (1935), 719-752.
|
[10] |
J. Bergh and J. Löfström, Interpolation Spaces: An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. |
[11] |
J. Bertoin, Random Fragmentation and Coagulation Processes, Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511617768.![]() ![]() ![]() |
[12] |
P. J. Blatz and A. V. Tobolsky,
Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena, The Journal of Physical Chemistry, 49 (1945), 77-80.
doi: 10.1021/j150440a004. |
[13] |
P. B. Dubovskiǐ and I. W. Stewart,
Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.
doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q. |
[14] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000. |
[15] |
M. Escobedo, S. Mischler and B. Perthame,
Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231 (2002), 157-188.
doi: 10.1007/s00220-002-0680-9. |
[16] |
M. Escobedo, P. Laurençot, S. Mischler and B. Perthame,
Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), 143-174.
doi: 10.1016/S0022-0396(03)00134-7. |
[17] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. |
[18] |
P. Laurençot and S. Mischler,
From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.
doi: 10.1017/S0308210502000598. |
[19] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[20] |
E. D. McGrady and R. M. Ziff,
"Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892-895.
doi: 10.1103/PhysRevLett.58.892. |
[21] |
Z. A. Melzak,
A scalar transport equation, Trans. Amer. Math. Soc., 85 (1957), 547-560.
doi: 10.1090/S0002-9947-1957-0087880-6. |
[22] |
H. Müller, Zur allgemeinen theorie der raschen koagulation, Fortschrittsberichte über Kolloide und Polymere, 27 (1928), 223–250. |
[23] |
M. v. Smoluchowski, Drei vortrage über diffusion, brownsche bewegung und koagulation von kolloidteilchen, Zeitschrift für Physik, 17 (1916), 557–585. |
[24] |
M. v. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift für Physikalische Chemie, 92 (1917), 129–168.
doi: 10.1515/zpch-1918-9209. |
[25] |
I. W. Stewart,
A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.
doi: 10.1002/mma.1670110505. |
[26] |
I. W. Stewart,
Density conservation for a coagulation equation, Z. Angew. Math. Phys., 42 (1991), 746-756.
doi: 10.1007/BF00944770. |
[27] |
R. D. Vigil and R. M. Ziff,
On the scaling theory of two-component aggregation, Chemical Engineering Science, 53 (1998), 1725-1729.
doi: 10.1016/S0009-2509(98)00016-5. |
[28] |
J. Voigt,
On the perturbation theory for strongly continuous semigroups, Math. Ann., 229 (1977), 163-171.
doi: 10.1007/BF01351602. |
[1] |
Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic and Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014 |
[2] |
Iñigo U. Erneta. Well-posedness for boundary value problems for coagulation-fragmentation equations. Kinetic and Related Models, 2020, 13 (4) : 815-835. doi: 10.3934/krm.2020028 |
[3] |
Mustapha Mokhtar-Kharroubi, Jacek Banasiak. On spectral gaps of growth-fragmentation semigroups in higher moment spaces. Kinetic and Related Models, 2022, 15 (2) : 147-185. doi: 10.3934/krm.2021050 |
[4] |
Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks and Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009 |
[5] |
Jacek Banasiak, Luke O. Joel, Sergey Shindin. The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation. Kinetic and Related Models, 2019, 12 (5) : 1069-1092. doi: 10.3934/krm.2019040 |
[6] |
Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulation-fragmentation systems. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 541-552. doi: 10.3934/dcds.2007.17.541 |
[7] |
Prasanta Kumar Barik, Ankik Kumar Giri. A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation. Kinetic and Related Models, 2018, 11 (5) : 1125-1138. doi: 10.3934/krm.2018043 |
[8] |
Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203 |
[9] |
Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126 |
[10] |
Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic and Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589 |
[11] |
Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445 |
[12] |
Angela A. Albanese, Elisabetta M. Mangino. Analytic semigroups and some degenerate evolution equations defined on domains with corners. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 595-615. doi: 10.3934/dcds.2015.35.595 |
[13] |
Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563 |
[14] |
Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963 |
[15] |
Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177 |
[16] |
Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic and Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223 |
[17] |
Mustapha Mokhtar-Kharroubi. On spectral gaps of growth-fragmentation semigroups with mass loss or death. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1293-1327. doi: 10.3934/cpaa.2022019 |
[18] |
Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations and Control Theory, 2020, 9 (2) : 431-446. doi: 10.3934/eect.2020012 |
[19] |
Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic and Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251 |
[20] |
Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]