[1]
|
J. Aguirre and D. Tully, Lake pollution model, (1999), Available from: https://mse.redwoods.edu/darnold/math55/DEProj/Sp99/DarJoel/lakepollution.pdf.
|
[2]
|
I. Aziz and S. Islam, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 239 (2013), 333-345.
doi: 10.1016/j.cam.2012.08.031.
|
[3]
|
B. Benhammouda, H. Vazquez-Leal and L. Hernandez-Martinez, A collocation approach to solving the model of pollution for a system of lakes, Discrete Dyn. Nat. Soc., 2014 (2014), Art. ID 645726.
|
[4]
|
İ. Çelik, Haar wavelet method for solving generalized Burgers-Huxley equation, Arab J. Math. Sci., 18 (2012), 25-37.
doi: 10.1016/j.ajmsc.2011.08.003.
|
[5]
|
C. F. Chen and C. H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Control Theory Appl., 144 (1997), 87-94.
doi: 10.1049/ip-cta:19970702.
|
[6]
|
G. Hariharan and K. Kannan, Haar wavelet method for solving some nonlinear parabolic equations, J. Math. Chem., 48 (2010), 1044-1061.
doi: 10.1007/s10910-010-9724-0.
|
[7]
|
G. Hariharan, K. Kannan and K. R. Sharma, Haar wavelet in estimating depth profile of soil temperature, Appl. Math. Comput., 210 (2009), 119-125.
doi: 10.1016/j.amc.2008.12.036.
|
[8]
|
G. Hariharan, K. Kannan and K. R. Sharma, Haar wavelet method for solving Fisher's equation, Appl. Math. Comput., 211 (2009), 284-292.
doi: 10.1016/j.amc.2008.12.089.
|
[9]
|
S. Islam, B. Šarler, I. Aziz and F. Haq, Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems, Int. J. Therm. Sci., 50 (2011), 686-697.
|
[10]
|
M. A. Khanday, A. Rafiq and K. Nazir, Mathematical models for drug diffusion through the compartments of blood and tissue medium, Alexandria J. Med., 53 (2017), 245-249.
|
[11]
|
Ü. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comput. Simulation, 68 (2005), 127-143.
doi: 10.1016/j.matcom.2004.10.005.
|
[12]
|
Ü. Lepik, Haar wavelet method for nonlinear integro-differential equations, Appl. Math. Comput., 176 (2006), 324-333.
doi: 10.1016/j.amc.2005.09.021.
|
[13]
|
Ü. Lepik, Numerical solution of evolution equations by the Haar wavelet method, Appl. Math. Comput., 185 (2007), 695-704.
doi: 10.1016/j.amc.2006.07.077.
|
[14]
|
Y. Li and W. Zhao, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216 (2010), 2276-2285.
doi: 10.1016/j.amc.2010.03.063.
|
[15]
|
Ö. Oruç, F. Bulut and A. Esen, A numerical treatment based on Haar wavelets for coupled KdV equation, Int. J. Optim. Control. Theor. Appl. IJOCTA, 7 (2017), 195-204.
doi: 10.11121/ijocta.01.2017.00396.
|
[16]
|
M. Rehman and R. A. Khan, A numerical method for solving boundary value problems for fractional differential equations, Appl. Math. Model., 36 (2012), 894-907.
doi: 10.1016/j.apm.2011.07.045.
|
[17]
|
M. Rehman and R. A. Khan, Numerical solutions to initial and boundary value problems for linear fractional partial differential equations, Appl. Math. Model., 37 (2013), 5233-5244.
doi: 10.1016/j.apm.2012.10.045.
|
[18]
|
H. Saeedi, N. Mollahasani, M. Moghadam and G. Chuev, An operational Haar wavelet method for solving fractional Volterra integral equations, Int. J. Appl. Math. Comput. Sci., 21 (2011), 535-547.
doi: 10.2478/v10006-011-0042-x.
|
[19]
|
I. Singh and S. Kumar, Approximate solution of convection-diffusion equations using a Haar wavelet method, Ital. J. Pure Appl. Math., 35 (2015), 143-154.
|
[20]
|
J. Duintjer Tebbens, M. Azar, E. Friedmann, M. Lanzendörfer and P. Pávek, Mathematical models in the description of pregnane X receptor (PXR)-regulated cytochrome P450 enzyme induction, Int. J. Mol. Sci., 19 (2018), 1785.
doi: 10.3390/ijms19061785.
|
[21]
|
S. G. Venkatesh, S. K. Ayyaswamy and G. Hariharan, Haar wavelet method for solving initial and boundary value problems of Bratu-type, Int. J. Comput. Math. Sci., 4 (2010), 286-289.
|
[22]
|
Ş. Yüzbaşı, N. Şahin and M. Sezer, A collocation approach to solving the model of pollution for a system of lakes, Math. Comput. Model., 55 (2012), 330-341.
doi: 10.1016/j.mcm.2011.08.007.
|