\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

How interest rate influences a business cycle model

  • * Corresponding author: Jingli Ren

    * Corresponding author: Jingli Ren

This research is supported by the National Natural Science Foundation of China (11771407), and the Innovative Research Team of Science and Technology in Henan Province (17IRTSTHN007)

Abstract Full Text(HTML) Figure(15) Related Papers Cited by
  • We study the effect of interest rate on phenomenon of business cycle in a Kaldor-Kalecki model. From the information of the People's Bank of China and the Federal Reserve System, we know the interest rate is not a constant but with remarkable periodic volatility. Therefore, we consider periodically forced interest rate in the model and study its dynamics. It is found that, both limit cycle through Hopf bifurcation in unforced system and periodic solutions generated by period doubling bifurcation or resonance in periodically forced system, can lead to cyclical economic fluctuations. Our analysis reveals that the cyclical fluctuation of interest rate is one of a key formation mechanism of business cycle, which agrees well with the pure monetary theory on business cycle. Moreover, this fluctuation can cause chaos in a business cycle system.

    Mathematics Subject Classification: Primary: 34C23, 37G15; Secondary: 37D45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  S-shape of $ I(Y) $

    Figure 2.  Fluctuations of interest rate. (a) Interest rate of FED from September 1986 to February 2007; (b) Interest rate of PBC from July 1998 to October 2015

    Figure 3.  Phase portraits of a fold bifurcation of system (5) for $ \alpha = 2 $, $ \beta = 0.6 $, $ \gamma = 0.283368 $, $ \delta = 0.3 $, $ m = 2.294 $, $ n = 4.612 $, $ C_{0} = 0.2 $. (a) $ d = 0.6 $. (b) $ d = 0.750017 $. (c) $ d = 0.8 $

    Figure 4.  Bifurcation diagram of system (5) in $ d-\gamma $ plane for $ \alpha = 3 $, $ \beta = 0.6 $, $ \delta = 0.3 $, $ m = 3 $, $ n = 5.6 $, $ C_{0} = 0.6 $

    Figure 5.  Phase portrait of Hopf bifurcation of system (5) for $ \alpha = 3 $, $ \beta = 0.6 $, $ d = 0.195 $, $ \delta = 0.3 $, $ m = 3 $, $ n = 5.6 $, $ C_{0} = 0.6 $. (a) Supercritical Hopf bifurcation for $ \gamma = 1.175 $. (b) Subcritical Hopf bifurcation for $ \gamma = 0.66 $

    Figure 6.  Time series of limit cycles corresponding to the cases in Fig. 5. (a) Stable limit cycle generated by supercritical Hopf bifurcation for $ \gamma = 1.175 $. (b) Stable limit cycle in system (5) for case $ \gamma = 0.66 $. (c) Unstable limit cycle generated by subcritical Hopf bifurcation for $ \gamma = 0.66 $

    Figure 7.  (b) Bifurcation diagrams of the forced system in with $ \alpha = 3, \beta = 0.6, \gamma = 0.4, \delta = 0.3, m = 3, n = 5.6, C_{0} = 0.2 $. (c) partial enlargements of (b)

    Figure 8.  (a) Bifurcation diagrams of the forced system in with $ \alpha = 3, \beta = 0.6, \gamma = 0.7, \delta = 0.3, m = 3.6, n = 10.58, C_{0} = 0.2 $. (b) partial enlargements of (a)

    Figure 9.  (a) Bifurcation diagrams of the forced system in $ (\epsilon - d) $ plane with $ \alpha = 5, \beta = 0.6, \gamma = 0.85, \delta = 0.3, m = 3.211, n = 3.368, C_{0} = 1 $

    Figure 10.  (a) Bifurcation diagrams of the forced system in $ (\epsilon - d) $ plane with $ \alpha = 5, \beta = 0.6, \gamma = 0.8, \delta = 0.3, m = 3.211, n = 3.368, C_{0} = 1 $

    Figure 11.  Phase portrait of different solutions. (a) A stable period-two orbit for $ d = 0.3, \epsilon = 0.8 $. (b), (c) Poincaré section and Time series of the stable period-two orbit. (d) A stable period-four orbit for $ \ d = 0.18, \epsilon = 0.8 $. (e), (f) Poincaré section and Time series of the stable period-four orbit. (g) Phase portrait of torus for $ d = 0.2, \epsilon = 0.1 $. (h), (i) Poincaré section and Time series of the torus

    Figure 12.  Phase portrait of chaotic attractor. (a) Chaotic attractor through cascade of period doublings for $ d = 0.25, \epsilon = 0.5 $. (b), (c) Corresponding Poincaré section and Time series of (a). (d) Chaotic attractor through torus destruction for $ d = 0.2, \epsilon = 0.2 $. (e), (f) Corresponding Poincaré section and Time series of (d)

    Figure 13.  (a) Spectrum of largest Lyapunov exponents for $ \epsilon = 0.5 $. (b) Spectrum of largest Lyapunov exponents for $ \epsilon = 0.2 $

    Figure 14.  (a) Bifurcation diagram in $ (Y-d) $ plane for $ \epsilon = 0.5 $. (b) Bifurcation diagram in $ (Y-d) $ plane for $ \epsilon = 0.2 $

    Figure 15.  (a) A stable period-three orbit for $ \gamma = 0.85,d = 0.45, \epsilon = 0.2 $. (b), (c) Poincaré section and Time series of the stable period-three orbit. (d) A stable period-five orbit for $ \gamma = 0.8,d = 0.235, \epsilon = 0.7 $. (e), (f) Poincaré section and Time series of the stable period-five orbit

  • [1] I. BashkirtsevaL. Ryashko and T. Ryazanova, Stochastic sensitivity analysis of the variability of dynamics and transition to chaos in the business cycles model, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 174-184.  doi: 10.1016/j.cnsns.2017.05.030.
    [2] D. Besomi, Clément Juglar and the transition from crises theory to business cycle theories, Conference on the Occasion of the Centenary of the Death of Clement Juglar, Paris, 2005.
    [3] F. Cavalli, A. Naimzada and N. Pecora, Real and financial market interactions in a multiplier-accelerator model: Nonlinear dynamics, multistability and stylized facts, Chaos, 27 (2017), 15pp. doi: 10.1063/1.4994617.
    [4] W. W. Chang and D. J. Smyth, The existence and persistence of cycles in a non-linear model: Kaldor's 1940 model re-examined, Rev. Econ. Stud., 38 (1971), 37-44.  doi: 10.2307/2296620.
    [5] J. Greenwood, Z. Hercowitz and G. W. Huffman, Investment, capacity utilization, and the real business cycle, Am. Econ. Rev., (1971), 402-417.
    [6] R. M. Goodwin, The nonlinear accelerator and the persistence of business cycles, Econometrica, 19 (1951), 1-17.  doi: 10.2307/1907905.
    [7] R. G. Hawtrey, The trade cycle, De Economist, 75 (1926), 169-185.  doi: 10.1007/BF02213478.
    [8] R. G. Hawtrey, The monetary theory of the trade cycle and its statistical test, Q. J. ECON., 41 (1927), 471-486.  doi: 10.2307/1883702.
    [9] R. G. Hawtrey, Trade and Credit, Longmans, London, 1928.
    [10] X. He, C. Li and Y. Shu, Bifurcation analysis of a discrete-time Kaldor model of business cycle, Int. J. Bifurcat. Chaos, 22 (2012). doi: 10.1142/S0218127412501866.
    [11] W. S. Jevons, Commercial crises and sun-spots, Nature, 19 (1878), 33-37.  doi: 10.1038/019033d0.
    [12] A. Kaddar and H. T. Alaoui, Hopf bifurcation analysis in a delayed Kaldor-Kalecki model of business cycle, Nonlinear Anal. Model. Control, 13 (2008), 439-449.  doi: 10.15388/NA.2008.13.4.14550.
    [13] N. Kaldor, A model of the trade cycle, Econ. J., 50 (1940), 78-92.  doi: 10.2307/2225740.
    [14] J. M. Keynes, The General Theory of Employment, Interest, and Money, Palgrave Macmillan, Cham, 2018. doi: 10.1007/978-3-319-70344-2.
    [15] N. D. Kondratieff and W. F. Stolper, The long waves in economic life, Review: J. Fernand Braudel Center, 2 (1979), 519-562. 
    [16] A. Krawiec and M. Szydlowski, The Kaldor-Kalecki business cycle model, Ann. Oper. Res., 89 (1999), 89-100.  doi: 10.1023/A:1018948328487.
    [17] W. A. Lewis, Growth and Fluctuations 1870-1913, Routledge, 2009.
    [18] X. P. LiJ. L. RenS. A. CampbellG. S. Wolkowicz and H. P. Zhu, How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 785-807.  doi: 10.3934/dcdsb.2018043.
    [19] T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature, 397 (1999), 498-500.  doi: 10.1038/17290.
    [20] A. K. Naimzada and N. Pecora, Dynamics of a multiplier-accelerator model with nonlinear investment function, Nonlinear Dynam., 88 (2017), 1147-1161.  doi: 10.1007/s11071-016-3301-4.
    [21] L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4613-0003-8.
    [22] J. L. Ren and X. P. Li, Bifurcations in a seasonally forced predator-prey model with generalized Holling type â…£ functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 19pp. doi: 10.1142/S0218127416502035.
    [23] J. L. Ren and Q. G. Yuan, Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate, Chaos, 27 (2017), 15pp. doi: 10.1063/1.5000152.
    [24] M. T. RosensteinJ. J. Collins and C. J. D. Luca, A practical method for calculating largest Lyapunov exponents from small data sets, Phys. D, 65 (1993), 117-134.  doi: 10.1016/0167-2789(93)90009-P.
    [25] J. A. Schumpeter, Business Cycles, McGraw-Hill, New York, 1939. doi: 10.1522/030021081.
    [26] X. P. Wu and L. Wang, Multi-parameter bifurcations of the Kaldor-Kalecki model of business cycles with delay, Nonlineear Anal. Real World Appl., 11 (2010), 869-887.  doi: 10.1016/j.nonrwa.2009.01.023.
  • 加载中

Figures(15)

SHARE

Article Metrics

HTML views(510) PDF downloads(420) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return