[1]
|
S. Aikio, R. P. Duncan and P. E. Hulme, Lag-phases in alien plant invasions: Separating the facts from the artefacts, Oikos, 119 (2010), 370-378.
doi: 10.1111/j.1600-0706.2009.17963.x.
|
[2]
|
M. Bani-Yaghoub, Numerical simulations of traveling and stationary wave solutions arising from reaction-diffusion population models with delay and nonlocality, Int. J. Appl. Comput. Math., 4 (2018), 19pp.
doi: 10.1007/s40819-017-0441-2.
|
[3]
|
M. Bani-Yaghoub, G. Yao and H. Voulov, Existence and stability of stationary waves of a population model with strong Allee effect, J. Comput. Appl. Math., 307 (2016), 385-393.
doi: 10.1016/j.cam.2015.11.021.
|
[4]
|
M. Bani-Yaghoub, Approximate wave solutions of delay diffusive models using a differential transform method, Appl. Math. E-Notes, 16 (2016), 99-104.
|
[5]
|
M. Bani-Yaghoub, Approximating the traveling wavefront for a nonlocal delayed reaction-diffusion equation, J. Appl. Math. Comput., 53 (2017), 77-94.
doi: 10.1007/s12190-015-0958-7.
|
[6]
|
M. Bani-Yaghoub, G. Yao, M. Fujiwara and D. E. Amundsen, Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model, Ecological Complexity, 21 (2015), 14-26.
doi: 10.1016/j.ecocom.2014.10.007.
|
[7]
|
M. Bani-Yaghoub and D. E. Amundsen, Oscillatory traveling waves for a population diffusion model with two age classes and nonlocality induced by maturation delay, Comput. Appl. Math., 34 (2015), 309-324.
doi: 10.1007/s40314-014-0118-y.
|
[8]
|
M. Bani-Yaghoub, G. Yao and A. Reed, Modeling and numerical simulations of single species dispersal in symmetrical domains, Int. J. Appl. Math., 27 (2014), 525-547.
|
[9]
|
N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.
doi: 10.1137/0150099.
|
[10]
|
F. De Mello, C. A. Oliveira, R. P. Ribeiro, E. K. Resende and et al., Growth curve by Gompertz nonlinear regression model in female and males in tambaqui (Colossoma macropomum), An Acad Bras Cienc., 87 (2015), 2309-2315.
doi: 10.1590/0001-3765201520140315.
|
[11]
|
W. Feng and J. Hinson, Stability and pattern in two-patch predator-prey population dynamics, Discrete Contin. Dyn. Syst., 2005 (2005), 268-279.
doi: 10.3934/proc.2005.2005.268.
|
[12]
|
J. Fort and V. Méndez, Time-delayed theory of the Neolithic transition in Europe, Phys. Rev. Lett., 82 (1999), 867-871.
doi: 10.1103/PhysRevLett.82.867.
|
[13]
|
M. R. Gaither, G. Aeby, M. Vignon, Y.-I. Meguro and M. Rigby, et al., An invasive fish and the time-lagged spread of its parasite across the Hawaiian archipelago, PLoS One, 8 (2013).
doi: 10.1371/journal.pone.0056940.
|
[14]
|
B. Gompertz, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Phil. Trans. Royal Soc. London, 115 (1825), 513-583.
doi: 10.1098/rspl.1815.0271.
|
[15]
|
K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, 74, Kluwer Academic Publishers Group, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9.
|
[16]
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[17]
|
J. C. Houbolt, A recurrence matrix solution for the dynamic response of elastic aircraft, J. Aeronaut. Sci., 17 (1950), 540-550.
doi: 10.2514/8.1722.
|
[18]
|
A. Ishimaru, Diffusion of a pulse in densely distributed scatterers, J. Opt. Soc. Am., 68 (1978), 1045-1050.
doi: 10.1364/JOSA.68.001045.
|
[19]
|
I. Jadlovska, Application of Lambert $W$ function in oscillation theory, Acta Electrotechnica et Informatica, 14 (2014), 9-17.
doi: 10.15546/aeei-2014-0002.
|
[20]
|
P. Klepac, M. G. Neubert and P. van den Driessche, Dispersal delays, predator-prey stability, and the paradox of enrichment, Theor. Popul. Biol., 71 (2007), 436-444.
doi: 10.1016/j.tpb.2007.02.002.
|
[21]
|
K. Khatwani, On Ruth-Hurwitz criterion, IEEE Trans. Automat. Control, 26 (1981), 583-584.
doi: 10.1109/TAC.1981.1102670.
|
[22]
|
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993.
|
[23]
|
D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, J. Nonlinear Sci., 13 (2003), 289-310.
doi: 10.1007/s00332-003-0524-6.
|
[24]
|
D. Liang, J. Wu and F. Zhang, Modelling population growth with delayed nonlocal reaction in 2-dimensions, Math. Biosci. Eng., 2 (2005), 111-132.
doi: 10.3934/mbe.2005.2.111.
|
[25]
|
A. Maignan and T. C. Scott, Fleshing out the generalized Lambert $W$ function, ACM Commun. Comput. Algebra, 50 (2016), 45-60.
doi: 10.1145/2992274.2992275.
|
[26]
|
M. C. Memory, Bifurcation and asymptotic behaviour of solutions of a delay-differential equation with diffusion, SIAM J. Math. Anal., 20 (1989), 533-546.
doi: 10.1137/0520037.
|
[27]
|
M. G. Neubert, P. Klepac and P. van den Driessche, Stabilizing dispersal delays in predator-prey metapopulation models, Theor. Popul. Biol., 61 (2002), 339-347.
doi: 10.1006/tpbi.2002.1578.
|
[28]
|
A. Otto, J. Wang and G. Radons, Delay-induced wave instabilities in single-species reaction-diffusion systems., Phys. Rev. E, 96 (2017).
doi: 10.1103/PhysRevE.96.052202.
|
[29]
|
C. Ou and J. Wu, Existence and uniqueness of a wavefront in a delayed hyperbolic-parabolic model, Nonlinear Anal., 63 (2005), 364-387.
doi: 10.1016/j.na.2005.05.025.
|
[30]
|
M. Peleg, M. Corradini and M. Normand, The logistic (Verhulst) model for sigmoid microbial growth curves revisited, Food Research International, 40 (2007), 808-818.
doi: 10.1016/j.foodres.2007.01.012.
|
[31]
|
N. Perrin and V. Mazalov, Local competition, inbreeding, and the evolution of sex-biased dispersal, Am Nat., 155 (2000), 116-127.
doi: 10.1086/303296.
|
[32]
|
R. Pinhasi, J. Fort and A. J. Ammerman, Tracing the origin and spread of agriculture in Europe, PLoS Biol., 3 (2005).
doi: 10.1371/journal.pbio.0030410.
|
[33]
|
A. D. Polyanin, V. G. Sorokin and A. V. Vyazmin, Exact solutions and qualitative features of nonlinear hyperbolic reaction-diffusion equations with delay, Theor. Found. Chem. Eng., 49 (2015), 622-635.
doi: 10.1134/S0040579515050243.
|
[34]
|
M. A. Schweizer, About explanations for X-ray bursts with double peaks and precursors, Canadian J. Physics, 63 (1985), 956-961.
doi: 10.1139/p85-156.
|
[35]
|
T. C. Scott, R. B. Mann and R. E. Martinez II, General relativity and quantum mechanics: Towards a generalization of the Lambert $W$ function, Appl. Algebra Engrg. Comm. Comput., 17 (2006), 41-47.
doi: 10.1007/s00200-006-0196-1.
|
[36]
|
H. L. Smith and X. Q. Zhao, Global asymptotic stability of travelling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.
doi: 10.1137/S0036141098346785.
|
[37]
|
J. W.-H. So and J. Yu, Global attractivity for a population model with time delay, Proc. Amer. Math. Soc., 123 (1995), 2687-2694.
doi: 10.1090/S0002-9939-1995-1317052-5.
|
[38]
|
J. W.-H. So, J. Wu and Y. Yang, Numerical Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation, Appl. Math. Comput., 111 (2000), 33-51.
doi: 10.1016/S0096-3003(99)00047-8.
|
[39]
|
J. W.-H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age-structure. I: Traveling wavefronts on unbounded domains, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 1841-1853.
doi: 10.1098/rspa.2001.0789.
|
[40]
|
J. W.-H. So and Y. Yang, Dirichlet problem for the diffusive Nicholson's blowflies equation, J. Differential Equations, 150 (1998), 317-348.
doi: 10.1006/jdeq.1998.3489.
|
[41]
|
A. Solar and S. Trofimchuk, Asymptotic convergence to pushed wavefronts in a monostable equation with delayed reaction, Nonlinearity, 28 (2015), 2027-2052.
doi: 10.1088/0951-7715/28/7/2027.
|
[42]
|
A. Solar and S. Trofimchuk, Speed selection and stability of wavefronts for delayed monostable reaction-diffusion equations, J. Dynam. Differential Equations, 28 (2016), 1265-1292.
doi: 10.1007/s10884-015-9482-6.
|
[43]
|
A. Soroushian and J. Farjoodi, A united starting procedure for the Houbolt method, Comm. Numer. Methods Engrg., 24 (2008), 1-13.
doi: 10.1002/cnm.949.
|
[44]
|
Y. Takeuchi, J. Cui, M. Rinko and Y. Saito, Permanence of dispersal population model with time delays, J. Comput. Appl. Math., 192 (2006), 417-430.
doi: 10.1016/j.cam.2005.06.002.
|
[45]
|
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.
doi: 10.2307/j.ctv301f9v.
|
[46]
|
H. R. Thieme and X. Q. Zhao, A nonlocal delayed and diffusive predator-prey model, Nonlinear Anal. Real World Appl., 2 (2001), 145-160.
doi: 10.1016/S0362-546X(00)00112-7.
|
[47]
|
K. M. C. Tjrve and E. Tjrve, The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family, PLoS ONE, 12 (2017).
doi: 10.1371/journal.pone.0178691.
|
[48]
|
S. Trofimchuk and V. Volpert, Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities, Nonlinearity, 32 (2019), 2593-2632.
doi: 10.1088/1361-6544/ab0e23.
|
[49]
|
H. Wan, L. Zhang and H. Li, A single species model with symmetric bidirectional impulsive diffusion and dispersal delay, J. Appl. Math., 3 (2012), 1079-1088.
doi: 10.1155/2014/701545.
|
[50]
|
H. Wan, L. Zhang and Z. Teng, Analysis of a single species model with dissymmetric bidirectional impulsive diffusion and dispersal delay, J. Appl. Math., 2014 (2014), 11pp.
doi: 10.1155/2014/701545.
|
[51]
|
P. Weng, D. Liang and J. Wu, Asymptotic patterns of a structured population diffusing in a two-dimensional strip, Nonlinear Anal., 69 (2008), 3931-3951.
doi: 10.1016/j.na.2007.10.027.
|
[52]
|
J. Wu, Theory and Applications of Partial Functional-Differential Equations, Applied Mathematical Sciences, 119, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1.
|
[53]
|
G. Yao, An improved localized method of approximate particular solutions for solving elliptic PDEs, Comput. Math. Appl., 71 (2016), 171-184.
doi: 10.1016/j.camwa.2015.11.008.
|
[54]
|
D. L. Young, M. H. Gu and C. M. Fan, The time-marching method of fundamental solutions for wave equations, Eng. Anal. Bound. Elem., 33 (2009), 1411-1425.
doi: 10.1016/j.enganabound.2009.05.008.
|
[55]
|
X. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type, J. Comput. Appl. Math., 146 (2002), 309-321.
doi: 10.1016/S0377-0427(02)00363-1.
|