
-
Previous Article
Numerical study of an influenza epidemic dynamical model with diffusion
- DCDS-S Home
- This Issue
-
Next Article
Exact and numerical solution of stochastic Burgers equations with variable coefficients
Lagrangian dynamics by nonlocal constants of motion
1. | Università di Udine, Dipartimento di Scienze Matematiche, Informatiche e Fisiche, via delle Scienze 208, 33100 Udine, Italy |
2. | Università di Verona, Dipartimento di Informatica, strada Le Grazie 15, 37134 Verona, Italy |
A simple general theorem is used as a tool that generates nonlocal constants of motion for Lagrangian systems. We review some cases where the constants that we find are useful in the study of the systems: the homogeneous potentials of degree $ -2 $, the mechanical systems with viscous fluid resistance and the conservative and dissipative Maxwell-Bloch equations of laser dynamics. We also prove a new result on explosion in the past for mechanical system with hydraulic (quadratic) fluid resistance and bounded potential.
References:
[1] |
F. T. Arecchi and R. Meucci, Chaos in Lasers, Scholarpedia, 2008.
doi: 10.4249/scholarpedia.7066. |
[2] |
F. Calogero,
Solutions of the one dimensional $n$-body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 12 (1971), 419-436.
doi: 10.1063/1.1665604. |
[3] |
G. Gorni and G. Zampieri,
Revisiting Noether's theorem on constants of motion, J. Nonlinear Math. Phys., 21 (2014), 43-73.
doi: 10.1080/14029251.2014.894720. |
[4] |
G. Gorni and G. Zampieri,
Nonlocal variational constants of motion in dissipative dynamics, Differential Integral Equations, 30 (2017), 631-640.
|
[5] |
G. Gorni and G. Zampieri,
Nonstandard separation of variables for the Maxwell-Bloch conservative system, São Paulo J. Math. Sci., 12 (2018), 146-169.
doi: 10.1007/s40863-017-0079-3. |
[6] |
G. Gorni and G. Zampieri,
Nonlocal and nonvariational extensions of Killing- type equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 675-689.
doi: 10.3934/dcdss.2018042. |
[7] |
G. Gorni, S. Residori and G. Zampieri,
A quasi separable dissipative Maxwell- Bloch system for laser dynamics, Qual. Theory Dyn. Syst., 18 (2019), 371-381.
doi: 10.1007/s12346-018-0290-3. |
[8] |
P. G. L. Leach,
Lie symmetries and Noether symmetries, Appl. Anal. Discrete Math., 6 (2012), 238-246.
doi: 10.2298/AADM120625015L. |
[9] |
R. Leone and T. Gourieux, Classical Noether theory with application to the linearly damped particle, European Journal of Physics, 36 (2015), 20 pp.
doi: 10.1088/0143-0807/36/6/065022. |
show all references
References:
[1] |
F. T. Arecchi and R. Meucci, Chaos in Lasers, Scholarpedia, 2008.
doi: 10.4249/scholarpedia.7066. |
[2] |
F. Calogero,
Solutions of the one dimensional $n$-body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 12 (1971), 419-436.
doi: 10.1063/1.1665604. |
[3] |
G. Gorni and G. Zampieri,
Revisiting Noether's theorem on constants of motion, J. Nonlinear Math. Phys., 21 (2014), 43-73.
doi: 10.1080/14029251.2014.894720. |
[4] |
G. Gorni and G. Zampieri,
Nonlocal variational constants of motion in dissipative dynamics, Differential Integral Equations, 30 (2017), 631-640.
|
[5] |
G. Gorni and G. Zampieri,
Nonstandard separation of variables for the Maxwell-Bloch conservative system, São Paulo J. Math. Sci., 12 (2018), 146-169.
doi: 10.1007/s40863-017-0079-3. |
[6] |
G. Gorni and G. Zampieri,
Nonlocal and nonvariational extensions of Killing- type equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 675-689.
doi: 10.3934/dcdss.2018042. |
[7] |
G. Gorni, S. Residori and G. Zampieri,
A quasi separable dissipative Maxwell- Bloch system for laser dynamics, Qual. Theory Dyn. Syst., 18 (2019), 371-381.
doi: 10.1007/s12346-018-0290-3. |
[8] |
P. G. L. Leach,
Lie symmetries and Noether symmetries, Appl. Anal. Discrete Math., 6 (2012), 238-246.
doi: 10.2298/AADM120625015L. |
[9] |
R. Leone and T. Gourieux, Classical Noether theory with application to the linearly damped particle, European Journal of Physics, 36 (2015), 20 pp.
doi: 10.1088/0143-0807/36/6/065022. |


[1] |
Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539 |
[2] |
Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657 |
[3] |
Lan Huang, Zhiying Sun, Xin-Guang Yang, Alain Miranville. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1595-1620. doi: 10.3934/cpaa.2022033 |
[4] |
Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 95-111. doi: 10.3934/dcdss.2009.2.95 |
[5] |
Bernard Ducomet, Šárka Nečasová. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1193-1213. doi: 10.3934/dcdss.2013.6.1193 |
[6] |
Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665 |
[7] |
Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180 |
[8] |
Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045 |
[9] |
Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli. Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences & Engineering, 2005, 2 (3) : 445-460. doi: 10.3934/mbe.2005.2.445 |
[10] |
D. L. Denny. Existence of solutions to equations for the flow of an incompressible fluid with capillary effects. Communications on Pure and Applied Analysis, 2004, 3 (2) : 197-216. doi: 10.3934/cpaa.2004.3.197 |
[11] |
Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2271-2297. doi: 10.3934/dcds.2013.33.2271 |
[12] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[13] |
Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data. Electronic Research Archive, 2020, 28 (2) : 879-895. doi: 10.3934/era.2020046 |
[14] |
Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553 |
[15] |
Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867 |
[16] |
Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385 |
[17] |
Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303 |
[18] |
Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 |
[19] |
Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039 |
[20] |
Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]