The quasilinearization method is applied to a boundary value problem at resonance for a Riemann-Liouville fractional differential equation. Under suitable hypotheses, the method of upper and lower solutions is employed to establish uniqueness of solutions. A shift method, coupled with the method of upper and lower solutions, is applied to establish existence of solutions. The quasilinearization algorithm is then applied to obtain sequences of lower and upper solutions that converge monotonically and quadratically to the unique solution of the boundary value problem at resonance.
Citation: |
[1] |
R. P. Agarwal, B. Ahmad and A. Alsaedi, Method of quasilinearization for a nonlocal singular boundary value problem in weighted spaces, Bound. Value Probl., 261 (2013), 17 pp.
doi: 10.1186/1687-2770-2013-261.![]() ![]() ![]() |
[2] |
E. Akin-Bohner and F. M. Atici, A quasilinearization approach for two-point nonlinear boundary value problems on time scales, Rocky Mountain J. Math., 35 (2005), 19-45.
doi: 10.1216/rmjm/1181069766.![]() ![]() ![]() |
[3] |
J. Aljedani and P. Eloe, Uniqueness of solutions of boundary value problems at resonance, Advances in the Theory of Nonlinear Analysis and its Application, 2 (2018), 168-183.
doi: 10.31197/atnaa.453919.![]() ![]() |
[4] |
M. Al-Refai, On the fractional derivatives at extreme points, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 5 pp.
doi: 10.14232/ejqtde.2012.1.55.![]() ![]() ![]() |
[5] |
K. Alanazi, M. Alshammari and P. Eloe, Quasilinearization and Boundary Value Problems at Resonance, Georgian Mathematics J., (2019).
doi: 10.1515/gmj-2019-2058.![]() ![]() |
[6] |
V. Antony Vijesh, A short note on the quasilinearization method for fractional differential equations, Numer. Funct. Anal. Optim., 37 (2016), 1158-1167.
doi: 10.1080/01630563.2016.1188827.![]() ![]() ![]() |
[7] |
R. Bellman, Methods of Nonlinear Analysis. Vol. II, Mathematics in Science and Engineering,
Vol. 61-II, Academic Press, New York-London, 1973.
![]() ![]() |
[8] |
R. Bellman and R. Kalba, Quasilinearization and Nonlinear Boundary Value Problems, Modern Analytic and Computional Methods in Science and Mathematics, Vol. 3. American Elsevier Publishing Co., Inc., New York, 1965.
![]() ![]() |
[9] |
P. Eloe and J. Jonnalagadda, Quasilinearization and boundary value problems for Riemann-Liouville fractional differential equations, Electron. J. Differential Equations, (2019), 15 pp.
![]() ![]() |
[10] |
P. Eloe and Y. Gao, The method of quasilinearization and a three-point boundary value problem, J. Korean Math. Soc., 39 (2002), 319-330.
doi: 10.4134/JKMS.2002.39.2.319.![]() ![]() ![]() |
[11] |
P. W. Eloe and Y. Z. Zhang, A quadratic monotone iteration scheme for two-point boundary value problems for ordinary differential equations, Nonlinear Anal., 33 (1998), 443-453.
doi: 10.1016/S0362-546X(97)00633-0.![]() ![]() ![]() |
[12] |
P. Guo, C. P. Li and G. R. Chen, On the fractional mean-value theorem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 6 pp.
doi: 10.1142/S0218127412501040.![]() ![]() ![]() |
[13] |
H. J. Hauberk, A. M. Mathai and R. K. Saxena, Mittag - Leffler functions and their applications, Journal of Applied Mathematics, 2011 (2011), 51 pp.
doi: 10.1155/2011/298628.![]() ![]() ![]() |
[14] |
G. Infante, P. Pietramala and F. A.F. Tojo, Nontrivial solutions of local and nonlocal Neumann boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 337-369.
doi: 10.1017/S0308210515000499.![]() ![]() ![]() |
[15] |
R. A. Khan, Existence and approximation of solutions to three-point boundary value problems for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 8 pp.
doi: 10.14232/ejqtde.2011.1.58.![]() ![]() ![]() |
[16] |
R. A. Khan and R. Rodríguez-López, Existence and approximation of solutions of second-order nonlinear four point boundary value problems, Nonlinear Anal., 63 (2005), 1094-1115.
doi: 10.1016/j.na.2005.05.030.![]() ![]() ![]() |
[17] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
![]() ![]() |
[18] |
V. Lakshmikantham, S. Leela and F. A. McRae, Improved generalized quasilinearization (GQL) method, Nonlinear Anal., 24 (1995), 1627-1637.
doi: 10.1016/0362-546X(94)E0090-4.![]() ![]() ![]() |
[19] |
V. Lakshmikantham, N. Shahzad and J. J. Nieto, Methods of generalized quasilinearization for periodic boundary value problems, Nonlinear Anal., 27 (1996), 143-151.
doi: 10.1016/0362-546X(95)00021-M.![]() ![]() ![]() |
[20] |
V. Lakshmikantham, S. Leela and S. Sivasundaram, Extensions of the methods of quasilinearization, J. Optim. Theory Appl., 87 (1995), 379-401.
doi: 10.1007/BF02192570.![]() ![]() ![]() |
[21] |
J. J. Nieto, Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc., 125 (1997), 2599-2604, http://www.jstor.org/stable/2162028.
doi: 10.1090/S0002-9939-97-03976-2.![]() ![]() ![]() |
[22] |
I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.
![]() ![]() |
[23] |
N. Shahzad and A. S. Vatsala, Improved generalized quasilinearization method for second order boundary value problems, Dynam. Systems Appl., 4 (1995), 79-85.
![]() ![]() |
[24] |
N. Sveikate, Resonant problems by quasilinearization, Int. J. Differ. Equ., 2014 (2014), 8 pp.
doi: 10.1155/2014/564914.![]() ![]() ![]() |
[25] |
J. Vasundhara Devi, F. A. McRae and Z. Drici, Generalized quasilinearization for fractional differential equations, Comput. Math. Appl., 59 (2010), 1057-1062.
doi: 10.1016/j.camwa.2009.05.017.![]() ![]() ![]() |
[26] |
W. Z. Xie, J. Xiao and Z. G. Luo, Existence of solutions for Riemann-Liouville fractional boundary value problem, Abstr. Appl. Anal., 2014 (2014), 9 pp.
doi: 10.1155/2014/540351.![]() ![]() ![]() |
[27] |
A. Yakar, Initial time difference quasilinearization for Caputo fractional differential equations, Adv. Difference Equ., 2012 (2012), 9 pp.
doi: 10.1186/1687-1847-2012-92.![]() ![]() ![]() |
[28] |
I. Yermachenko and F. Sadyrbaev, Quasilinearization and multiple solutions solutions of the Emden-Fowler type equations, Math. Model. Anal., 10 (2005), 41-50.
![]() ![]() |