[1]
|
I. Ahmad, M. Riaz, M. Ayaz, M. Arif, S. Islam and P. Kumam, Numerical simulation of partial differential equations via local meshless method, Symmetry, 11 (2019), 257 pp.
doi: 10.3390/sym11020257.
|
[2]
|
I. Ahmad, M. Ahsan, Zaheer-ud-Din, M. Ahmad and P. Kumam, An efficient local formulation for time-dependent PDEs, Mathematics, 7 (2019), 216 pp.
doi: 10.3390/math7030216.
|
[3]
|
I. Ahmad, Siraj-ul-Islam and A. Q. M. Khaliq, Local RBF method for multi-dimensional partial differential equations, Comput. Math. Appl., 74 (2017), 292-324.
doi: 10.1016/j.camwa.2017.04.026.
|
[4]
|
I. Ahmad, M. Ahsan, I. Hussain, P. Kumam and W. Kumam, Numerical simulation of PDEs by local meshless differential quadrature collocation method, Symmetry, 11 (2019), 394 pp.
doi: 10.3390/sym11030394.
|
[5]
|
W. Cao, Q. Xu, Qinwu and Z. Zheng, Solution of two-dimensional time-fractional Burgers' equation with high and low Reynolds numbers, Advances in Difference Equations, 338 (2017), 14 pp.
doi: 10.1186/s13662-017-1398-5.
|
[6]
|
S. Chen, F. Liu, P. Zhuang and V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 33 (2009), 256-273.
doi: 10.1016/j.apm.2007.11.005.
|
[7]
|
K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2.
|
[8]
|
T. S. El-Danaf and A. R. Hadhoud, Parametric spline functions for the solution of the one time fractional Burgers' equation, Appl. Math. Model., 36 (2012), 4557-4564.
doi: 10.1016/j.apm.2011.11.035.
|
[9]
|
Y. T. Gu and G. R. Liu, Meshless techniques for convection dominated problems, Comput. Mech., 38 (2006), 171-182.
doi: 10.1007/s00466-005-0736-8.
|
[10]
|
V. R. Hosseini, E. Shivanian and W. Chen, Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping, J. Comput. Phys., 312 (2016), 307-332.
doi: 10.1016/j.jcp.2016.02.030.
|
[11]
|
M. Inc, The approximate and exact solutions of the space-and time-fractional Burgers' equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476-484.
doi: 10.1016/j.jmaa.2008.04.007.
|
[12]
|
H. Jafari and S. Seifi, Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1962-1969.
doi: 10.1016/j.cnsns.2008.06.019.
|
[13]
|
D. Li, C. Zhang and M. Ran, A linear finite difference scheme for generalized time fractional Burgers' equation, Appl. Math. Model., 40 (2016), 6069-6081.
doi: 10.1016/j.apm.2016.01.043.
|
[14]
|
Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.
doi: 10.1016/j.jcp.2007.02.001.
|
[15]
|
G. R. Liu and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming, Berlin, Springer-Verlag 2005.
|
[16]
|
A. Mohebbi, M. Abbaszadeh and M. Dehghan, The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem., 37 (2013), 475-485.
doi: 10.1016/j.enganabound.2012.12.002.
|
[17]
|
M. D. Ortigueira, The fractional quantum derivative and its integral representations, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 956-962.
doi: 10.1016/j.cnsns.2009.05.026.
|
[18]
|
A. Prakash, M. Kumar and K. K. Sharma, Numerical method for solving fractional coupled Burgers equations, Appl. Math. Comput., 260 (2015), 314-320.
doi: 10.1016/j.amc.2015.03.037.
|
[19]
|
Y. Sanyasiraju and C. Satyanarayana, Upwind strategies for local RBF scheme to solve convection dominated problems, Eng. Anal. Bound. Elem., 48 (2014), 1-13.
doi: 10.1016/j.enganabound.2014.06.008.
|
[20]
|
A. Saravanan and N. Magesh, A comparison between the reduced differential transform method and the Adomian decomposition method for the Newell-Whitehead-Segel equation, J. Egyptian Math. Soc., 21 (2013), 259-265.
doi: 10.1016/j.joems.2013.03.004.
|
[21]
|
E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance, Physica A, 284 (2000), 376-384.
doi: 10.1016/S0378-4371(00)00255-7.
|
[22]
|
Q. Shen, Local RBF-based differential quadrature collocation method for the boundary layer problems, Eng. Anal. Bound. Elem., 34 (2010), 213-228.
doi: 10.1016/j.enganabound.2009.10.004.
|
[23]
|
C. Shu, Differential Quadrature and Its Application in Engineering, Springer-Verlag London, Ltd., London, 2000.
doi: 10.1007/978-1-4471-0407-0.
|
[24]
|
B. K. Singh and P. Kumar, Numerical computation for time-fractional gas dynamics equations by fractional reduced differential transforms method, Journal of Mathematics and System Science, 6 (2016), 248-259.
|
[25]
|
Siraj-ul-Islam and I. Ahmad, A comparative analysis of local meshless formulation for multi-asset option models, Eng. Anal. Bound. Elem., 65 (2016), 159-176.
doi: 10.1016/j.enganabound.2015.12.020.
|
[26]
|
Siraj-ul-Islam and I. Ahmad, Local meshless method for PDEs arising from models of wound healing, Appl. Math. Model., 48 (2017), 688-710.
doi: 10.1016/j.apm.2017.04.015.
|
[27]
|
P. Thounthong, M. N. Khan, I. Hussain, I. Ahmad and P. Kumam, Symmetric radial basis function method for simulation of elliptic partial differential equations, Mathematics, 6 (2018), 327 pp.
doi: 10.3390/math6120327.
|
[28]
|
J. Y. Yang, Y. M. Zhao, N. Liu, W. P. Bu, T. L. Xu and Y. F. Tang, An implicit MLS meshless method for 2-D time dependent fractional diffusion–wave equation, Appl. Math. Model., 39 (2015), 1229-1240.
doi: 10.1016/j.apm.2014.08.005.
|
[29]
|
G. Yao, Siraj-ul-Islam and B. Sarler, Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions, Eng. Anal. Bound. Elem., 36 (2012), 1640-1648.
doi: 10.1016/j.enganabound.2012.04.012.
|
[30]
|
Y. Zhang, A finite difference method for fractional partial differential equation, Appl. Math. Comput., 215 (2009), 524-529.
doi: 10.1016/j.amc.2009.05.018.
|