
-
Previous Article
Mathematical model of signal propagation in excitable media
- DCDS-S Home
- This Issue
-
Next Article
Numerical and mathematical analysis of blow-up problems for a stochastic differential equation
Spatio-temporal coexistence in the cross-diffusion competition system
1. | Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadainishi Miyazaki, 889-2192, Japan |
2. | Graduate School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan |
We study a two component cross-diffusion competition system which describes the population dynamics between two biological species. Since the cross-diffusion competition system possesses the so-called population pressure effects, a variety of solution behaviors can be exhibited compared with the classical diffusion competition system. In particular, we discuss on the existence of spatially non-constant time periodic solutions. Applying the center manifold theory and the standard normal form theory, the cross-diffusion competition system is reduced to a two dimensional dynamical system around a doubly degenerate point. As a result, we show the existence of stable time periodic solutions in the system. This means spatio-temporal coexistence between two biological species.
References:
[1] |
D. Armbruster, J. Guckenheimer and P. Holmes,
Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry, Physica D, 29 (1988), 257-282.
doi: 10.1016/0167-2789(88)90032-2. |
[2] |
D. Armbruster, J. Guckenheimer and P. Holmes,
Kuramoto-Sivashinsky dynamics on the center-unstable manifold, SIAM J. Appl. Math., 49 (1988), 676-691.
doi: 10.1137/0149039. |
[3] |
J. Carr, Application of Centre Manifold Theory, Applied Mathematical Sciences, 35. Springer-Verlag, New York-Berlin, 1981. |
[4] |
L. Chen and A. Jüngel,
Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.
doi: 10.1137/S0036141003427798. |
[5] |
Y. S. Choi, R. Lui and Y. Yamada,
Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.
doi: 10.3934/dcds.2004.10.719. |
[6] |
F. Conforto and L. Desvillettes,
Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusion, Commun. Math. Sci., 12 (2014), 457-472.
doi: 10.4310/CMS.2014.v12.n3.a3. |
[7] |
L. Desvillettes and A. Trescases,
New results for triangular reaction cross diffusion system, J. Math. Anal. Appl., 430 (2015), 32-59.
doi: 10.1016/j.jmaa.2015.03.078. |
[8] |
E. J. Doedel, B. E. Oldman, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, R. Paffenroth, B. Sandstede, X. Wang and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations., Google Scholar |
[9] |
H. Fujii, M. Mimura and Y. Nishiura,
A picture of the global bifurcation diagram in ecological interacting and diffusing systems, Physica D, 5 (1982), 1-42.
doi: 10.1016/0167-2789(82)90048-3. |
[10] |
M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimentional Dynamics Systems, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011.
doi: 10.1007/978-0-85729-112-7. |
[11] |
M. W. Hirsch,
Differential equations and convergence almost everywhere in strongly monotone semiflow, Nonlinear Partial Differential Equations (Durham, N.H., 1982), Contemp. Math., Amer. Math. Soc., Providence, 17 (1983), 267-285.
|
[12] |
M. Iida, M. Mimura and H. Ninomiya,
Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.
doi: 10.1007/s00285-006-0013-2. |
[13] |
H. Izuhara and M. Mimura,
Reaction-diffusion system approximation to the cross-diffusion competition system, Hiroshima Math. J., 38 (2008), 315-347.
doi: 10.32917/hmj/1220619462. |
[14] |
Y. Kan-on,
Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., 23 (1993), 509-536.
doi: 10.32917/hmj/1206392779. |
[15] |
K. Kishimoto and H. F. Weinberger,
The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential equations, 58 (1985), 15-21.
doi: 10.1016/0022-0396(85)90020-8. |
[16] |
Y. Kuramoto and T. Tsuzuki,
Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.
doi: 10.1143/PTP.55.356. |
[17] |
K. Kuto and Y. Yamada,
Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., 89 (2010), 1037-1066.
doi: 10.1080/00036811003627534. |
[18] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[19] |
Y. Lou and W.-M. Ni,
Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[20] |
Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154 (1999) 157–190.
doi: 10.1006/jdeq.1998.3559. |
[21] |
Y. Lou, W.-M. Ni and Y. P. Wu,
On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203.
doi: 10.3934/dcds.1998.4.193. |
[22] |
Y. Lou, W.-M. Ni and S. Yotsutani,
Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.
doi: 10.3934/dcds.2015.35.1589. |
[23] |
Y. Low and M. Winkler,
Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differential Equations, 40 (2015), 1905-1941.
doi: 10.1080/03605302.2015.1052882. |
[24] |
H. Matano and M. Mimura,
Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., 19 (1983), 1049-1079.
doi: 10.2977/prims/1195182020. |
[25] |
M. Mimura and K. Kawasaki,
Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.
doi: 10.1007/BF00276035. |
[26] |
M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa,
Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425-449.
doi: 10.32917/hmj/1206133048. |
[27] |
W.-M. Ni, Y. P. Wu and Q. Xu,
The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.
doi: 10.3934/dcds.2014.34.5271. |
[28] |
N. Shigesada, K. Kawasaki and E. Teramoto,
Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3. |
[29] |
Y. P. Wu,
The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340.
doi: 10.1016/j.jde.2004.08.015. |
[30] |
A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04631-5. |
show all references
References:
[1] |
D. Armbruster, J. Guckenheimer and P. Holmes,
Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry, Physica D, 29 (1988), 257-282.
doi: 10.1016/0167-2789(88)90032-2. |
[2] |
D. Armbruster, J. Guckenheimer and P. Holmes,
Kuramoto-Sivashinsky dynamics on the center-unstable manifold, SIAM J. Appl. Math., 49 (1988), 676-691.
doi: 10.1137/0149039. |
[3] |
J. Carr, Application of Centre Manifold Theory, Applied Mathematical Sciences, 35. Springer-Verlag, New York-Berlin, 1981. |
[4] |
L. Chen and A. Jüngel,
Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.
doi: 10.1137/S0036141003427798. |
[5] |
Y. S. Choi, R. Lui and Y. Yamada,
Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.
doi: 10.3934/dcds.2004.10.719. |
[6] |
F. Conforto and L. Desvillettes,
Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusion, Commun. Math. Sci., 12 (2014), 457-472.
doi: 10.4310/CMS.2014.v12.n3.a3. |
[7] |
L. Desvillettes and A. Trescases,
New results for triangular reaction cross diffusion system, J. Math. Anal. Appl., 430 (2015), 32-59.
doi: 10.1016/j.jmaa.2015.03.078. |
[8] |
E. J. Doedel, B. E. Oldman, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, R. Paffenroth, B. Sandstede, X. Wang and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations., Google Scholar |
[9] |
H. Fujii, M. Mimura and Y. Nishiura,
A picture of the global bifurcation diagram in ecological interacting and diffusing systems, Physica D, 5 (1982), 1-42.
doi: 10.1016/0167-2789(82)90048-3. |
[10] |
M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimentional Dynamics Systems, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011.
doi: 10.1007/978-0-85729-112-7. |
[11] |
M. W. Hirsch,
Differential equations and convergence almost everywhere in strongly monotone semiflow, Nonlinear Partial Differential Equations (Durham, N.H., 1982), Contemp. Math., Amer. Math. Soc., Providence, 17 (1983), 267-285.
|
[12] |
M. Iida, M. Mimura and H. Ninomiya,
Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.
doi: 10.1007/s00285-006-0013-2. |
[13] |
H. Izuhara and M. Mimura,
Reaction-diffusion system approximation to the cross-diffusion competition system, Hiroshima Math. J., 38 (2008), 315-347.
doi: 10.32917/hmj/1220619462. |
[14] |
Y. Kan-on,
Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., 23 (1993), 509-536.
doi: 10.32917/hmj/1206392779. |
[15] |
K. Kishimoto and H. F. Weinberger,
The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential equations, 58 (1985), 15-21.
doi: 10.1016/0022-0396(85)90020-8. |
[16] |
Y. Kuramoto and T. Tsuzuki,
Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.
doi: 10.1143/PTP.55.356. |
[17] |
K. Kuto and Y. Yamada,
Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., 89 (2010), 1037-1066.
doi: 10.1080/00036811003627534. |
[18] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[19] |
Y. Lou and W.-M. Ni,
Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[20] |
Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154 (1999) 157–190.
doi: 10.1006/jdeq.1998.3559. |
[21] |
Y. Lou, W.-M. Ni and Y. P. Wu,
On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203.
doi: 10.3934/dcds.1998.4.193. |
[22] |
Y. Lou, W.-M. Ni and S. Yotsutani,
Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.
doi: 10.3934/dcds.2015.35.1589. |
[23] |
Y. Low and M. Winkler,
Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differential Equations, 40 (2015), 1905-1941.
doi: 10.1080/03605302.2015.1052882. |
[24] |
H. Matano and M. Mimura,
Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., 19 (1983), 1049-1079.
doi: 10.2977/prims/1195182020. |
[25] |
M. Mimura and K. Kawasaki,
Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.
doi: 10.1007/BF00276035. |
[26] |
M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa,
Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425-449.
doi: 10.32917/hmj/1206133048. |
[27] |
W.-M. Ni, Y. P. Wu and Q. Xu,
The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.
doi: 10.3934/dcds.2014.34.5271. |
[28] |
N. Shigesada, K. Kawasaki and E. Teramoto,
Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3. |
[29] |
Y. P. Wu,
The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340.
doi: 10.1016/j.jde.2004.08.015. |
[30] |
A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04631-5. |



[1] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[2] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[3] |
M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403 |
[4] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[5] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[6] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[7] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[8] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[9] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[10] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[11] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[12] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[13] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[14] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[15] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[16] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[17] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[18] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[19] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[20] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]