March  2021, 14(3): 919-933. doi: 10.3934/dcdss.2020228

Spatio-temporal coexistence in the cross-diffusion competition system

1. 

Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadainishi Miyazaki, 889-2192, Japan

2. 

Graduate School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan

* Corresponding author: Shunsuke Kobayashi

Received  January 2019 Revised  September 2019 Published  December 2019

We study a two component cross-diffusion competition system which describes the population dynamics between two biological species. Since the cross-diffusion competition system possesses the so-called population pressure effects, a variety of solution behaviors can be exhibited compared with the classical diffusion competition system. In particular, we discuss on the existence of spatially non-constant time periodic solutions. Applying the center manifold theory and the standard normal form theory, the cross-diffusion competition system is reduced to a two dimensional dynamical system around a doubly degenerate point. As a result, we show the existence of stable time periodic solutions in the system. This means spatio-temporal coexistence between two biological species.

Citation: Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228
References:
[1]

D. ArmbrusterJ. Guckenheimer and P. Holmes, Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry, Physica D, 29 (1988), 257-282.  doi: 10.1016/0167-2789(88)90032-2.  Google Scholar

[2]

D. ArmbrusterJ. Guckenheimer and P. Holmes, Kuramoto-Sivashinsky dynamics on the center-unstable manifold, SIAM J. Appl. Math., 49 (1988), 676-691.  doi: 10.1137/0149039.  Google Scholar

[3]

J. Carr, Application of Centre Manifold Theory, Applied Mathematical Sciences, 35. Springer-Verlag, New York-Berlin, 1981.  Google Scholar

[4]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.  doi: 10.1137/S0036141003427798.  Google Scholar

[5]

Y. S. ChoiR. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.  doi: 10.3934/dcds.2004.10.719.  Google Scholar

[6]

F. Conforto and L. Desvillettes, Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusion, Commun. Math. Sci., 12 (2014), 457-472.  doi: 10.4310/CMS.2014.v12.n3.a3.  Google Scholar

[7]

L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system, J. Math. Anal. Appl., 430 (2015), 32-59.  doi: 10.1016/j.jmaa.2015.03.078.  Google Scholar

[8]

E. J. Doedel, B. E. Oldman, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, R. Paffenroth, B. Sandstede, X. Wang and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations., Google Scholar

[9]

H. FujiiM. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems, Physica D, 5 (1982), 1-42.  doi: 10.1016/0167-2789(82)90048-3.  Google Scholar

[10]

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimentional Dynamics Systems, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. doi: 10.1007/978-0-85729-112-7.  Google Scholar

[11]

M. W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflow, Nonlinear Partial Differential Equations (Durham, N.H., 1982), Contemp. Math., Amer. Math. Soc., Providence, 17 (1983), 267-285.   Google Scholar

[12]

M. IidaM. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[13]

H. Izuhara and M. Mimura, Reaction-diffusion system approximation to the cross-diffusion competition system, Hiroshima Math. J., 38 (2008), 315-347.  doi: 10.32917/hmj/1220619462.  Google Scholar

[14]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., 23 (1993), 509-536.  doi: 10.32917/hmj/1206392779.  Google Scholar

[15]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential equations, 58 (1985), 15-21.  doi: 10.1016/0022-0396(85)90020-8.  Google Scholar

[16]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[17]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., 89 (2010), 1037-1066.  doi: 10.1080/00036811003627534.  Google Scholar

[18]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[20]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154 (1999) 157–190. doi: 10.1006/jdeq.1998.3559.  Google Scholar

[21]

Y. LouW.-M. Ni and Y. P. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203.  doi: 10.3934/dcds.1998.4.193.  Google Scholar

[22]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[23]

Y. Low and M. Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differential Equations, 40 (2015), 1905-1941.  doi: 10.1080/03605302.2015.1052882.  Google Scholar

[24]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., 19 (1983), 1049-1079.  doi: 10.2977/prims/1195182020.  Google Scholar

[25]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.  doi: 10.1007/BF00276035.  Google Scholar

[26]

M. MimuraY. NishiuraA. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425-449.  doi: 10.32917/hmj/1206133048.  Google Scholar

[27]

W.-M. NiY. P. Wu and Q. Xu, The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.  doi: 10.3934/dcds.2014.34.5271.  Google Scholar

[28]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[29]

Y. P. Wu, The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340.  doi: 10.1016/j.jde.2004.08.015.  Google Scholar

[30]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1]

D. ArmbrusterJ. Guckenheimer and P. Holmes, Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry, Physica D, 29 (1988), 257-282.  doi: 10.1016/0167-2789(88)90032-2.  Google Scholar

[2]

D. ArmbrusterJ. Guckenheimer and P. Holmes, Kuramoto-Sivashinsky dynamics on the center-unstable manifold, SIAM J. Appl. Math., 49 (1988), 676-691.  doi: 10.1137/0149039.  Google Scholar

[3]

J. Carr, Application of Centre Manifold Theory, Applied Mathematical Sciences, 35. Springer-Verlag, New York-Berlin, 1981.  Google Scholar

[4]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.  doi: 10.1137/S0036141003427798.  Google Scholar

[5]

Y. S. ChoiR. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.  doi: 10.3934/dcds.2004.10.719.  Google Scholar

[6]

F. Conforto and L. Desvillettes, Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusion, Commun. Math. Sci., 12 (2014), 457-472.  doi: 10.4310/CMS.2014.v12.n3.a3.  Google Scholar

[7]

L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system, J. Math. Anal. Appl., 430 (2015), 32-59.  doi: 10.1016/j.jmaa.2015.03.078.  Google Scholar

[8]

E. J. Doedel, B. E. Oldman, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, R. Paffenroth, B. Sandstede, X. Wang and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations., Google Scholar

[9]

H. FujiiM. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems, Physica D, 5 (1982), 1-42.  doi: 10.1016/0167-2789(82)90048-3.  Google Scholar

[10]

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimentional Dynamics Systems, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. doi: 10.1007/978-0-85729-112-7.  Google Scholar

[11]

M. W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflow, Nonlinear Partial Differential Equations (Durham, N.H., 1982), Contemp. Math., Amer. Math. Soc., Providence, 17 (1983), 267-285.   Google Scholar

[12]

M. IidaM. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[13]

H. Izuhara and M. Mimura, Reaction-diffusion system approximation to the cross-diffusion competition system, Hiroshima Math. J., 38 (2008), 315-347.  doi: 10.32917/hmj/1220619462.  Google Scholar

[14]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., 23 (1993), 509-536.  doi: 10.32917/hmj/1206392779.  Google Scholar

[15]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential equations, 58 (1985), 15-21.  doi: 10.1016/0022-0396(85)90020-8.  Google Scholar

[16]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[17]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., 89 (2010), 1037-1066.  doi: 10.1080/00036811003627534.  Google Scholar

[18]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[20]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154 (1999) 157–190. doi: 10.1006/jdeq.1998.3559.  Google Scholar

[21]

Y. LouW.-M. Ni and Y. P. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203.  doi: 10.3934/dcds.1998.4.193.  Google Scholar

[22]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[23]

Y. Low and M. Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differential Equations, 40 (2015), 1905-1941.  doi: 10.1080/03605302.2015.1052882.  Google Scholar

[24]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., 19 (1983), 1049-1079.  doi: 10.2977/prims/1195182020.  Google Scholar

[25]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.  doi: 10.1007/BF00276035.  Google Scholar

[26]

M. MimuraY. NishiuraA. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425-449.  doi: 10.32917/hmj/1206133048.  Google Scholar

[27]

W.-M. NiY. P. Wu and Q. Xu, The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.  doi: 10.3934/dcds.2014.34.5271.  Google Scholar

[28]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[29]

Y. P. Wu, The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340.  doi: 10.1016/j.jde.2004.08.015.  Google Scholar

[30]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

Figure 1.  Neutral stability curves in $ (d,\gamma) $-plane. The horizontal axis and the vertical axis mean the value $ d $ and the value $ \gamma $, respectively. The parameter values are $ r_1 = 5 $, $ r_2 = 2 $, $ a_1 = 3 $, $ a_2 = 1 $, $ b_1 = 1 $, $ b_2 = 3 $ and $ L = 1 $
Figure 2.  Global bifurcation diagrams for (3) with (4) when the value of $ \gamma $ varies. The horizontal axis and the vertical axis mean the value $ d $ and the boundary value $ u(0) $, respectively. Solid curves and dashed curves mean stable branches and unstable ones, respectively. The marks $ \square $ and $ \blacksquare $ indicate a pitchfork bifurcation point and a Hopf bifurcation point, respectively. The parameter values are the same as the ones in Figure 1
Figure 3.  (a) Enlarged view of the bifurcation diagram for $ \gamma = 1.7 $ in Figure 2 in the neighborhood of the Hopf bifurcation points. The marks $ \bullet $ indicate stable periodic solution branch. The parameter values are the same as the ones in Figure 2. (b) A periodic solution at $ d = 0.01528 $
[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[3]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[4]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[5]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[7]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[8]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[9]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[10]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[11]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[14]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[15]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[16]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[17]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[18]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[19]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[20]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (135)
  • HTML views (457)
  • Cited by (0)

Other articles
by authors

[Back to Top]