
-
Previous Article
Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction
- DCDS-S Home
- This Issue
-
Next Article
Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows
Reflection of a self-propelling rigid disk from a boundary
1. | Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan |
2. | Department of Mathematical Engineering, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan |
3. | Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan |
A system of ordinary differential equations that describes the motion of a self-propelling rigid disk is studied. In this system, the disk moves along a straight-line and reflects from a boundary. Interestingly, numerical simulation shows that the angle of reflection is greater than that of incidence. The purpose of this study is to present a mathematical proof for this attractive phenomenon. Moreover, the reflection law is numerically investigated. Finally, existence and asymptotic stability of a square-shaped closed orbit for billiards in square table with inelastic reflection law are discussed.
References:
[1] |
X. F. Chen, S.-I. Ei and M. Mimura,
Self-motion of camphor discs. Model and analysis, Netw. Heterog. Media, 4 (2009), 1-18.
doi: 10.3934/nhm.2009.4.1. |
[2] |
S.-I. Ei, K. Ikeda, M. Nagayama and A. Tomoeda,
Reduced model from a reaction-diffusion system of collective motion of camphor boats, Discrete Contin. Dyn. Syst. S, 8 (2015), 847-856.
doi: 10.3934/dcdss.2015.8.847. |
[3] |
S.-I. Ei, H. Kitahata, Y. Koyano and M. Nagayama,
Interaction of non-radially symmetric camphor particles, Phys. D, 366 (2018), 10-26.
doi: 10.1016/j.physd.2017.11.004. |
[4] |
S.-I. Ei, M. Mimura and M. Nagayama, Interacting spots in reaction diffusion systems, Discrete Contin. Dyn. Syst., 14 (2006) 31-62.
doi: 10.3934/dcds.2006.14.31. |
[5] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, Second edition. Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-540-78862-1. |
[6] |
J. D. Hunter,
Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9 (2007), 90-95.
doi: 10.1109/MCSE.2007.55. |
[7] |
K. Iida, H. Kitahata and M. Nagayama,
Theoretical study on the translation and rotation of an elliptic camphor particle, Phys. D, 272 (2014), 39-50.
doi: 10.1016/j.physd.2014.01.005. |
[8] |
Y. S. Ikura, E. Heisler, A. Awazu, H. Nishimori and S. Nakata, Collective motion of symmetric camphor papers in an annular water channel, Phys. Rev. E, 88 (2013), 012911.
doi: 10.1103/PhysRevE.88.012911. |
[9] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[10] |
J. Langham and D. Barkley, Non-specular reflections in a macroscopic system with wave-particle duality: Spiral waves in bounded media, Chaos, 23 (2013), 013134, 9 pp.
doi: 10.1063/1.4793783. |
[11] |
M. Matsumoto, Analysis of the Particle Model Describing Motions of a Camphor, Master thesis, Hiroshima University, 2002. Google Scholar |
[12] |
T. Matsumoto, A Billiard Problem Under Nonlinear and Nonequilibrium Conditions, Master theses, Hiroshima University, 2003. Google Scholar |
[13] |
A. S. Mikhailov and V. Calenbuhr, From Cells to Societies: Models of Complex Coherent Action, Springer Series in Synergetics. Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-05062-0. |
[14] |
M. Mimura, T. Miyaji and I. Ohnishi,
A billiard problem in nonlinear and nonequilibrium systems, Hiroshima Math. J., 37 (2007), 343-384.
doi: 10.32917/hmj/1200529808. |
[15] |
T. Miyaji,
Arnold tongues in a billiard problem in nonlinear and nonequilibrium systems, Phys. D, 340 (2017), 14-25.
doi: 10.1016/j.physd.2016.09.003. |
[16] |
T. Morihara, A Nonequilibrium Billiard Problem: Simulations and Analyses, Master theses, Hiroshima University, 2004. Google Scholar |
[17] |
M. Nagayama, S. Nakata, Y. Doi and Y. Hayashima,
A theoretical and experimental study on the unidirectional motion of a camphor disk, Physica D: Nonlinear Phenomena, 194 (2004), 151-165.
doi: 10.1016/j.physd.2004.02.003. |
[18] |
S. Nakata and Y. Hayashima,
Spontaneous dancing of a camphor scraping, J. Chem. Soc., Faraday Trans., 94 (1998), 3655-3658.
doi: 10.1039/a806281a. |
[19] |
S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii and K. Yoshikawa,
Self-rotation of a camphor scraping on water: New insight into the old problem, Langmuir, 13 (1997), 4454-4458.
doi: 10.1021/la970196p. |
[20] |
S. Nakata, M. Nagayama, H. Kitahata, N. J. Suematsu and T. Hasegawa,
Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments, Phys. Chem. Chem. Phys., 17 (2015), 10326-10338.
doi: 10.1039/C5CP00541H. |
[21] |
S. Nakata, V. Pimienta, I. Lagzi, H. Kitahata and N. J Suematsu, Self-organized Motion: Physicochemical Design based on Nonlinear Dynamics, Royal Society of Chemistry, 2018.
doi: 10.1039/9781788013499. |
[22] |
S. Protière, A. Boudaoud and Y. Couder,
Particle-wave association on a fluid interface, J. Fluid Mech., 554 (2006), 85-108.
doi: 10.1017/S0022112006009190. |
[23] |
R. J. Strutt,
Ⅳ. Measurements of the amount of oil necessary in order to check the motions of camphor upon water, Proc. R. Soc. Lond., 47 (1889), 286-291.
doi: 10.1098/rspl.1889.0099. |
[24] |
S. Tabachnikov, Geometry and Billiards, Student Mathematical Library, 30. American Mathematical Society, Providence, RI, Mathematics Advanced Study Semesters, University Park, PA, 2005.
doi: 10.1090/stml/030. |
[25] |
S. Tanaka, Y. Sogabe and S. Nakata., Spontaneous change in trajectory patterns of a self-propelled oil droplet at the air-surfactant solution interface, Phys. Rev. E, 91 (2015), 032406.
doi: 10.1103/PhysRevE.91.032406. |
[26] |
O. Tange, GNU parallel - The command-line power tool, Login: The USENIX Magazine, (2011), 42-47. Google Scholar |
[27] |
C. Tomlinson,
Ⅱ. On the motions of camphor on the surface of water, Proc. Roy. Soc. London, 11 (1860), 575-577.
doi: 10.1098/rspl.1860.0124. |
[28] |
T. Williams and C. Kelley, Gnuplot homepage, (2018), http://gnuplot.info/. Google Scholar |
show all references
References:
[1] |
X. F. Chen, S.-I. Ei and M. Mimura,
Self-motion of camphor discs. Model and analysis, Netw. Heterog. Media, 4 (2009), 1-18.
doi: 10.3934/nhm.2009.4.1. |
[2] |
S.-I. Ei, K. Ikeda, M. Nagayama and A. Tomoeda,
Reduced model from a reaction-diffusion system of collective motion of camphor boats, Discrete Contin. Dyn. Syst. S, 8 (2015), 847-856.
doi: 10.3934/dcdss.2015.8.847. |
[3] |
S.-I. Ei, H. Kitahata, Y. Koyano and M. Nagayama,
Interaction of non-radially symmetric camphor particles, Phys. D, 366 (2018), 10-26.
doi: 10.1016/j.physd.2017.11.004. |
[4] |
S.-I. Ei, M. Mimura and M. Nagayama, Interacting spots in reaction diffusion systems, Discrete Contin. Dyn. Syst., 14 (2006) 31-62.
doi: 10.3934/dcds.2006.14.31. |
[5] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, Second edition. Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-540-78862-1. |
[6] |
J. D. Hunter,
Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9 (2007), 90-95.
doi: 10.1109/MCSE.2007.55. |
[7] |
K. Iida, H. Kitahata and M. Nagayama,
Theoretical study on the translation and rotation of an elliptic camphor particle, Phys. D, 272 (2014), 39-50.
doi: 10.1016/j.physd.2014.01.005. |
[8] |
Y. S. Ikura, E. Heisler, A. Awazu, H. Nishimori and S. Nakata, Collective motion of symmetric camphor papers in an annular water channel, Phys. Rev. E, 88 (2013), 012911.
doi: 10.1103/PhysRevE.88.012911. |
[9] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[10] |
J. Langham and D. Barkley, Non-specular reflections in a macroscopic system with wave-particle duality: Spiral waves in bounded media, Chaos, 23 (2013), 013134, 9 pp.
doi: 10.1063/1.4793783. |
[11] |
M. Matsumoto, Analysis of the Particle Model Describing Motions of a Camphor, Master thesis, Hiroshima University, 2002. Google Scholar |
[12] |
T. Matsumoto, A Billiard Problem Under Nonlinear and Nonequilibrium Conditions, Master theses, Hiroshima University, 2003. Google Scholar |
[13] |
A. S. Mikhailov and V. Calenbuhr, From Cells to Societies: Models of Complex Coherent Action, Springer Series in Synergetics. Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-05062-0. |
[14] |
M. Mimura, T. Miyaji and I. Ohnishi,
A billiard problem in nonlinear and nonequilibrium systems, Hiroshima Math. J., 37 (2007), 343-384.
doi: 10.32917/hmj/1200529808. |
[15] |
T. Miyaji,
Arnold tongues in a billiard problem in nonlinear and nonequilibrium systems, Phys. D, 340 (2017), 14-25.
doi: 10.1016/j.physd.2016.09.003. |
[16] |
T. Morihara, A Nonequilibrium Billiard Problem: Simulations and Analyses, Master theses, Hiroshima University, 2004. Google Scholar |
[17] |
M. Nagayama, S. Nakata, Y. Doi and Y. Hayashima,
A theoretical and experimental study on the unidirectional motion of a camphor disk, Physica D: Nonlinear Phenomena, 194 (2004), 151-165.
doi: 10.1016/j.physd.2004.02.003. |
[18] |
S. Nakata and Y. Hayashima,
Spontaneous dancing of a camphor scraping, J. Chem. Soc., Faraday Trans., 94 (1998), 3655-3658.
doi: 10.1039/a806281a. |
[19] |
S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii and K. Yoshikawa,
Self-rotation of a camphor scraping on water: New insight into the old problem, Langmuir, 13 (1997), 4454-4458.
doi: 10.1021/la970196p. |
[20] |
S. Nakata, M. Nagayama, H. Kitahata, N. J. Suematsu and T. Hasegawa,
Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments, Phys. Chem. Chem. Phys., 17 (2015), 10326-10338.
doi: 10.1039/C5CP00541H. |
[21] |
S. Nakata, V. Pimienta, I. Lagzi, H. Kitahata and N. J Suematsu, Self-organized Motion: Physicochemical Design based on Nonlinear Dynamics, Royal Society of Chemistry, 2018.
doi: 10.1039/9781788013499. |
[22] |
S. Protière, A. Boudaoud and Y. Couder,
Particle-wave association on a fluid interface, J. Fluid Mech., 554 (2006), 85-108.
doi: 10.1017/S0022112006009190. |
[23] |
R. J. Strutt,
Ⅳ. Measurements of the amount of oil necessary in order to check the motions of camphor upon water, Proc. R. Soc. Lond., 47 (1889), 286-291.
doi: 10.1098/rspl.1889.0099. |
[24] |
S. Tabachnikov, Geometry and Billiards, Student Mathematical Library, 30. American Mathematical Society, Providence, RI, Mathematics Advanced Study Semesters, University Park, PA, 2005.
doi: 10.1090/stml/030. |
[25] |
S. Tanaka, Y. Sogabe and S. Nakata., Spontaneous change in trajectory patterns of a self-propelled oil droplet at the air-surfactant solution interface, Phys. Rev. E, 91 (2015), 032406.
doi: 10.1103/PhysRevE.91.032406. |
[26] |
O. Tange, GNU parallel - The command-line power tool, Login: The USENIX Magazine, (2011), 42-47. Google Scholar |
[27] |
C. Tomlinson,
Ⅱ. On the motions of camphor on the surface of water, Proc. Roy. Soc. London, 11 (1860), 575-577.
doi: 10.1098/rspl.1860.0124. |
[28] |
T. Williams and C. Kelley, Gnuplot homepage, (2018), http://gnuplot.info/. Google Scholar |






[1] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[2] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[3] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[4] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[5] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[6] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[7] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[8] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[9] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[10] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[11] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[12] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[13] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[14] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[15] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[16] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[17] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[18] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[19] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[20] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]