• Previous Article
    Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow
  • DCDS-S Home
  • This Issue
  • Next Article
    Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh
March  2021, 14(3): 881-891. doi: 10.3934/dcdss.2020233

A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies

1. 

Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510, Japan

2. 

Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

3. 

School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

* Corresponding author. E-mail address : uegata@meiji.ac.jp (Yasuhide Uegata)

Received  January 2019 Revised  October 2019 Published  December 2019

We propose a simple and accurate procedure how to extract the values of model parameters in a flame/smoldering evolution equation from 2D movie images of real experiments. The procedure includes a novel method of image segmentation, which can detect an expanding smoldering front as a plane polygonal curve. The evolution equation is equivalent to the so-called Kuramoto-Sivashinsky (KS) equation in a certain scale. Our results suggest a valid range of parameters in the KS equation as well as the validity of the KS equation itself.

Citation: Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233
References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica New Series, 3 (2008), 509-523.   Google Scholar

[2]

C. L. Epstein and M. Gage, The curve shortening flow, Wave Motion: Theory, Modelling, and Computation (Berkeley, Calif., 1986) Mathematical Sciences Research Institute Publications, Springer, New York, 7 (1987), 15-59.  doi: 10.1007/978-1-4613-9583-6_2.  Google Scholar

[3]

M. L. Frankel and G. I. Sivashinsky, On the nonlinear thermal diffusive theory of curved flames, Journal de Physique, 48 (1987), 25-28.  doi: 10.1051/jphys:0198700480102500.  Google Scholar

[4]

M. GotoK. Kuwana and S. Yazaki, A simple and fast numerical method for solving flame/smoldering evolution equations, JSIAM Letter, 10 (2018), 49-52.  doi: 10.14495/jsiaml.10.49.  Google Scholar

[5]

M. GotoK. KuwanaG. Kushida and S. Yazaki, Experimental and theoretical study on near-floor flame spread along a thin solid, Proceedings of the Combustion Institute, 37 (2019), 3783-3791.  doi: 10.1016/j.proci.2018.06.001.  Google Scholar

[6]

M. KassA. Witkin and D. Terzopulos, Snakes: Active contour models, Int. J. Computer Vision, 1 (1988), 321-331.  doi: 10.1007/BF00133570.  Google Scholar

[7]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[8]

K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565.  doi: 10.1002/mma.514.  Google Scholar

[9]

K. Mikula and D. Ševčovič, Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225.  doi: 10.1007/s00791-004-0131-6.  Google Scholar

[10]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan J. Indust. Appl. Math., 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, On a gradient flow of plane curves minimizing the anisoperimetric ratio, IAENG International J. Appl. Math., 43 (2013), 160-171.   Google Scholar

[12]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronautica, 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[13]

N. M. Zaitoun and M. J. Aqel, Survey on image segmentation techniques, Procedia Computer Science, 65 (2015), 797-806.  doi: 10.1016/j.procs.2015.09.027.  Google Scholar

show all references

References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica New Series, 3 (2008), 509-523.   Google Scholar

[2]

C. L. Epstein and M. Gage, The curve shortening flow, Wave Motion: Theory, Modelling, and Computation (Berkeley, Calif., 1986) Mathematical Sciences Research Institute Publications, Springer, New York, 7 (1987), 15-59.  doi: 10.1007/978-1-4613-9583-6_2.  Google Scholar

[3]

M. L. Frankel and G. I. Sivashinsky, On the nonlinear thermal diffusive theory of curved flames, Journal de Physique, 48 (1987), 25-28.  doi: 10.1051/jphys:0198700480102500.  Google Scholar

[4]

M. GotoK. Kuwana and S. Yazaki, A simple and fast numerical method for solving flame/smoldering evolution equations, JSIAM Letter, 10 (2018), 49-52.  doi: 10.14495/jsiaml.10.49.  Google Scholar

[5]

M. GotoK. KuwanaG. Kushida and S. Yazaki, Experimental and theoretical study on near-floor flame spread along a thin solid, Proceedings of the Combustion Institute, 37 (2019), 3783-3791.  doi: 10.1016/j.proci.2018.06.001.  Google Scholar

[6]

M. KassA. Witkin and D. Terzopulos, Snakes: Active contour models, Int. J. Computer Vision, 1 (1988), 321-331.  doi: 10.1007/BF00133570.  Google Scholar

[7]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[8]

K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565.  doi: 10.1002/mma.514.  Google Scholar

[9]

K. Mikula and D. Ševčovič, Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225.  doi: 10.1007/s00791-004-0131-6.  Google Scholar

[10]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan J. Indust. Appl. Math., 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, On a gradient flow of plane curves minimizing the anisoperimetric ratio, IAENG International J. Appl. Math., 43 (2013), 160-171.   Google Scholar

[12]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronautica, 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[13]

N. M. Zaitoun and M. J. Aqel, Survey on image segmentation techniques, Procedia Computer Science, 65 (2015), 797-806.  doi: 10.1016/j.procs.2015.09.027.  Google Scholar

Figure 1.  The photographs depict snapshots from an experimental movie of spreading flame/smoldering front along a sheet of paper placed near the floor at 200th, 400th, 1000th, 1600th, $ \cdots $, 4000th frames at the rate of 30 fps. Experiments were performed by the same method as [5]
Figure 2.  The left figure depicts numerical solutions to (1), with the normal velocity (2) in which the parameters are given by the right table and $ W $ is chosen for controlling the grid-point spacing to be uniform (see section 3). The solution curves evolve from inside to outside. The initial curve is a circle with the diameter $ R = R_\mathrm{ini} $ with 10% noise (see [4] in detail)
Figure 3.  (a) Jordan curve $ \Gamma $      (b) Jordan polygonal curve $ \mathcal{P} $
Figure 4.  The upper-left figure depicts selected segmentation curves at frames: 400, 1000, 1600, 2200, 2800, 3400, 4000, summarizing the front evolution in the other photographs from left to right, upper to lower. The blue curve in each photograph is a segmentation curve, and the background vague region is the same as that in FIGURE 1
Figure 5.  (Left) The total length of front $ \tilde{L} [\mathrm{mm}] $ vs. the actual time $ [\mathrm{second}] $. (Right) The enclosed area $ \tilde{A} [\mathrm{mm}^2] $ vs. the actual time $ [\mathrm{second}] $. Blue points indicate the actual values and red curves are the graphs of (23) and (24), respectively
Figure 6.  (Left) $ V^{(0)} $ vs. time, (Right) $ \alpha_\mathrm{eff} $ vs. time
Table 1.  Discretizations of length, normal/tangent vector, and normal velocity
$ r_i=\|\boldsymbol{x}_i-\boldsymbol{x}_{i-1}\| $ : The length of $ \mathcal{P}_i $
$ L= \sum\limits_{i=1}^Nr_i $ : The total length of $ \mathcal{P} $
$ \boldsymbol{t}_i=(\boldsymbol{x}_i-\boldsymbol{x}_{i-1})/r_i $ : The unit tangent vector on $ \mathcal{P}_i $
$ \boldsymbol{n}_i=-\boldsymbol{t}_i^\bot $ : The outward unit normal vector on $ \mathcal{P}_i $
$ v_i $ : A given representative normal velocity on $ \mathcal{P}_i $
$ \phi_i=\mathrm{sgn}(D_i)\arccos(\boldsymbol{t}_i\cdot\boldsymbol{t}_{i+1}) $ : The angle between the adjacent edges $ \mathcal{P}_{i} $ and $ \mathcal{P}_{i+1} $ where $ D_i=\det(\boldsymbol{t}_i, \boldsymbol{t}_{i+1}) $
$ \boldsymbol{T}_i=(\boldsymbol{t}_i+\boldsymbol{t}_{i+1})/(2\mathsf{cos}_i) $ : The unit tangent vector at $ \boldsymbol{x}_i $ where $ \mathsf{cos}_i=\cos(\phi_i/2)=\|(\boldsymbol{t}_i+\boldsymbol{t}_{i+1})/2\| $
$ \boldsymbol{N}_i=(\boldsymbol{n}_i+\boldsymbol{n}_{i+1})/(2\mathsf{cos}_i) $ : The outward unit normal vector at $ \boldsymbol{x}_i $
$ V_i=(v_i+v_{i+1})/(2\mathsf{cos}_i) $ : The normal velocity at $ \boldsymbol{x}_i $
$ r_i=\|\boldsymbol{x}_i-\boldsymbol{x}_{i-1}\| $ : The length of $ \mathcal{P}_i $
$ L= \sum\limits_{i=1}^Nr_i $ : The total length of $ \mathcal{P} $
$ \boldsymbol{t}_i=(\boldsymbol{x}_i-\boldsymbol{x}_{i-1})/r_i $ : The unit tangent vector on $ \mathcal{P}_i $
$ \boldsymbol{n}_i=-\boldsymbol{t}_i^\bot $ : The outward unit normal vector on $ \mathcal{P}_i $
$ v_i $ : A given representative normal velocity on $ \mathcal{P}_i $
$ \phi_i=\mathrm{sgn}(D_i)\arccos(\boldsymbol{t}_i\cdot\boldsymbol{t}_{i+1}) $ : The angle between the adjacent edges $ \mathcal{P}_{i} $ and $ \mathcal{P}_{i+1} $ where $ D_i=\det(\boldsymbol{t}_i, \boldsymbol{t}_{i+1}) $
$ \boldsymbol{T}_i=(\boldsymbol{t}_i+\boldsymbol{t}_{i+1})/(2\mathsf{cos}_i) $ : The unit tangent vector at $ \boldsymbol{x}_i $ where $ \mathsf{cos}_i=\cos(\phi_i/2)=\|(\boldsymbol{t}_i+\boldsymbol{t}_{i+1})/2\| $
$ \boldsymbol{N}_i=(\boldsymbol{n}_i+\boldsymbol{n}_{i+1})/(2\mathsf{cos}_i) $ : The outward unit normal vector at $ \boldsymbol{x}_i $
$ V_i=(v_i+v_{i+1})/(2\mathsf{cos}_i) $ : The normal velocity at $ \boldsymbol{x}_i $
[1]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[2]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[3]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[4]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[5]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[6]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[7]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[8]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[9]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[12]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[13]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[14]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[15]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[16]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[17]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[18]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[19]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (122)
  • HTML views (515)
  • Cited by (0)

[Back to Top]