We study mixed hyperbolic systems with dynamic and Wentzell boundary conditions. The boundary condition contains a tangential operator which is strongly elliptic on the boundary. We prove results of generation of strongly continuous groups and well-posedness.
Citation: |
[1] |
M. Cavalcanti, A. Khemmoudj and M. Medjden, Uniform stabilisation of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions, J. Math. Anal. Appl., 328 (2007), 900-930.
doi: 10.1016/j.jmaa.2006.05.070.![]() ![]() ![]() |
[2] |
R. Clendenen, G. R. Goldstein and J. A. Goldstein, Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations, Discr. Cont. Dynam. Syst. Ser. S, 9 (2016), 651-660.
doi: 10.3934/dcdss.2016019.![]() ![]() ![]() |
[3] |
G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions, Commun. Pure Applied Anal., 13 (2004), 419-433.
doi: 10.3934/cpaa.2014.13.419.![]() ![]() ![]() |
[4] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, 2000.
![]() ![]() |
[5] |
C. Giorgi and D. Guidetti, Reconstruction of kernel depending also on a space variable, ath. Methods Appl. Sci., 41 (2018), 4560-4588.
doi: 10.1002/mma.4914.![]() ![]() ![]() |
[6] |
G. R. Goldstein, J. A. Goldstein, D. Guidetti and S. Romanelli, Maximal regularity, analytic semigroups, and dynamic and general Wentzell boundary conditions with a diffusion term on the boundary, Annali di Matematica Pura ed Applicata, 2019.
doi: 10.1007/s10231-019-00868-3.![]() ![]() |
[7] |
J. A. Goldstein, Semigroups of Linear Operators & Applications, Dover Publications, Inc. (Second Edition), 2017.
![]() ![]() |
[8] |
I. Lasiecka, J. L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators, J Math Pures et Appl., 65 (1986), 149-192.
![]() ![]() |
[9] |
S. Nicaise and K. Laoubi, Polynomial stabilization of the wave equation with Ventcel's boundary conditions, Math. Nachr., 283 (2010), 1428-1438.
doi: 10.1002/mana.200710162.![]() ![]() ![]() |
[10] |
G. Ruiz Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Diff. Eq., 11 (2006), 457-480.
![]() ![]() |
[11] |
H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, 6. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
![]() ![]() |
[12] |
E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, Journ. Diff. Eq., 265 (2018), 4873-4941.
doi: 10.1016/j.jde.2018.06.022.![]() ![]() ![]() |