December  2020, 13(12): 3461-3471. doi: 10.3934/dcdss.2020239

On hyperbolic mixed problems with dynamic and Wentzell boundary conditions

Dipartimento di matematica, Piazza di Porta S. Donato 5, 40126 Bologna, Italy

* Corresponding author

Dedicated to Gisele Ruiz Goldstein in occasion of her sixtieth birthday
The author is member of GNAMPA of Istituto Nazionale di Alta Matematica

Received  December 2018 Revised  August 2019 Published  December 2020 Early access  January 2020

We study mixed hyperbolic systems with dynamic and Wentzell boundary conditions. The boundary condition contains a tangential operator which is strongly elliptic on the boundary. We prove results of generation of strongly continuous groups and well-posedness.

Citation: Davide Guidetti. On hyperbolic mixed problems with dynamic and Wentzell boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3461-3471. doi: 10.3934/dcdss.2020239
References:
[1]

M. CavalcantiA. Khemmoudj and M. Medjden, Uniform stabilisation of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions, J. Math. Anal. Appl., 328 (2007), 900-930.  doi: 10.1016/j.jmaa.2006.05.070.

[2]

R. ClendenenG. R. Goldstein and J. A. Goldstein, Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations, Discr. Cont. Dynam. Syst. Ser. S, 9 (2016), 651-660.  doi: 10.3934/dcdss.2016019.

[3]

G. M. CocliteA. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions, Commun. Pure Applied Anal., 13 (2004), 419-433.  doi: 10.3934/cpaa.2014.13.419.

[4]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, 2000.

[5]

C. Giorgi and D. Guidetti, Reconstruction of kernel depending also on a space variable, ath. Methods Appl. Sci., 41 (2018), 4560-4588.  doi: 10.1002/mma.4914.

[6]

G. R. Goldstein, J. A. Goldstein, D. Guidetti and S. Romanelli, Maximal regularity, analytic semigroups, and dynamic and general Wentzell boundary conditions with a diffusion term on the boundary, Annali di Matematica Pura ed Applicata, 2019. doi: 10.1007/s10231-019-00868-3.

[7]

J. A. Goldstein, Semigroups of Linear Operators & Applications, Dover Publications, Inc. (Second Edition), 2017.

[8]

I. LasieckaJ. L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators, J Math Pures et Appl., 65 (1986), 149-192. 

[9]

S. Nicaise and K. Laoubi, Polynomial stabilization of the wave equation with Ventcel's boundary conditions, Math. Nachr., 283 (2010), 1428-1438.  doi: 10.1002/mana.200710162.

[10]

G. Ruiz Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Diff. Eq., 11 (2006), 457-480. 

[11]

H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, 6. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.

[12]

E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, Journ. Diff. Eq., 265 (2018), 4873-4941.  doi: 10.1016/j.jde.2018.06.022.

show all references

References:
[1]

M. CavalcantiA. Khemmoudj and M. Medjden, Uniform stabilisation of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions, J. Math. Anal. Appl., 328 (2007), 900-930.  doi: 10.1016/j.jmaa.2006.05.070.

[2]

R. ClendenenG. R. Goldstein and J. A. Goldstein, Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations, Discr. Cont. Dynam. Syst. Ser. S, 9 (2016), 651-660.  doi: 10.3934/dcdss.2016019.

[3]

G. M. CocliteA. FaviniG. R. GoldsteinJ. A. Goldstein and S. Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions, Commun. Pure Applied Anal., 13 (2004), 419-433.  doi: 10.3934/cpaa.2014.13.419.

[4]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, 2000.

[5]

C. Giorgi and D. Guidetti, Reconstruction of kernel depending also on a space variable, ath. Methods Appl. Sci., 41 (2018), 4560-4588.  doi: 10.1002/mma.4914.

[6]

G. R. Goldstein, J. A. Goldstein, D. Guidetti and S. Romanelli, Maximal regularity, analytic semigroups, and dynamic and general Wentzell boundary conditions with a diffusion term on the boundary, Annali di Matematica Pura ed Applicata, 2019. doi: 10.1007/s10231-019-00868-3.

[7]

J. A. Goldstein, Semigroups of Linear Operators & Applications, Dover Publications, Inc. (Second Edition), 2017.

[8]

I. LasieckaJ. L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators, J Math Pures et Appl., 65 (1986), 149-192. 

[9]

S. Nicaise and K. Laoubi, Polynomial stabilization of the wave equation with Ventcel's boundary conditions, Math. Nachr., 283 (2010), 1428-1438.  doi: 10.1002/mana.200710162.

[10]

G. Ruiz Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Diff. Eq., 11 (2006), 457-480. 

[11]

H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, 6. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.

[12]

E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, Journ. Diff. Eq., 265 (2018), 4873-4941.  doi: 10.1016/j.jde.2018.06.022.

[1]

Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419

[2]

Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401

[3]

Xiaoyu Fu. Stabilization of hyperbolic equations with mixed boundary conditions. Mathematical Control and Related Fields, 2015, 5 (4) : 761-780. doi: 10.3934/mcrf.2015.5.761

[4]

Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 651-660. doi: 10.3934/dcdss.2016019

[5]

Genni Fragnelli, Gisèle Ruiz Goldstein, Jerome Goldstein, Rosa Maria Mininni, Silvia Romanelli. Generalized Wentzell boundary conditions for second order operators with interior degeneracy. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 697-715. doi: 10.3934/dcdss.2016023

[6]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Enrico Obrecht, Silvia Romanelli. Nonsymmetric elliptic operators with Wentzell boundary conditions in general domains. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2475-2487. doi: 10.3934/cpaa.2016045

[7]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[8]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

[9]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[10]

Wen-Qing Xu. Boundary conditions for multi-dimensional hyperbolic relaxation problems. Conference Publications, 2003, 2003 (Special) : 916-925. doi: 10.3934/proc.2003.2003.916

[11]

Xilu Wang, Xiaoliang Cheng. Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2021064

[12]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[13]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[14]

V. Casarino, K.-J. Engel, G. Nickel, S. Piazzera. Decoupling techniques for wave equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 761-772. doi: 10.3934/dcds.2005.12.761

[15]

József Z. Farkas, Peter Hinow. Physiologically structured populations with diffusion and dynamic boundary conditions. Mathematical Biosciences & Engineering, 2011, 8 (2) : 503-513. doi: 10.3934/mbe.2011.8.503

[16]

Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations and Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016

[17]

Alassane Niang. Boundary regularity for a degenerate elliptic equation with mixed boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (1) : 107-128. doi: 10.3934/cpaa.2019007

[18]

Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252

[19]

Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144

[20]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (207)
  • HTML views (345)
  • Cited by (0)

Other articles
by authors

[Back to Top]