The aim of this paper is investigating the existence of at least one weak bounded solution of the quasilinear elliptic problem
$ \left\{ \begin{array}{ll} - {\rm{div}} (a(x,u,\nabla u)) + A_t(x,u,\nabla u)\ = \ f(x,u) &\hbox{in $\Omega$,}\\ u\ = \ 0 & \hbox{on $\partial\Omega$,} \end{array} \right. $
where $ \Omega \subset \mathbb R^N $ is an open bounded domain and $ A(x,t,\xi) $, $ f(x,t) $ are given real functions, with $ A_t = \frac{\partial A}{\partial t} $, $ a = \nabla_\xi A $.
We prove that, even if $ A(x,t,\xi) $ makes the variational approach more difficult, the functional associated to such a problem is bounded from below and attains its infimum when the growth of the nonlinear term $ f(x,t) $ is "controlled" by $ A(x,t,\xi) $. Moreover, stronger assumptions allow us to find the existence of at least one positive solution.
We use a suitable Minimum Principle based on a weak version of the Cerami–Palais–Smale condition.
Citation: |
[1] |
D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rational Mech. Anal., 134 (1996), 249-274.
doi: 10.1007/BF00379536.![]() ![]() ![]() |
[2] |
D. Arcoya, L. Boccardo and L. Orsina, Critical points for functionals with quasilinear singular Euler–Lagrange equations, Calc. Var. Partial Differential Equations, 47 (2013), 159-180.
doi: 10.1007/s00526-012-0514-3.![]() ![]() ![]() |
[3] |
R. Bartolo, A. M. Candela and A. Salvatore, $p$–Laplacian problems with nonlinearities interacting with the spectrum, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1701-1721.
doi: 10.1007/s00030-013-0226-1.![]() ![]() ![]() |
[4] |
L. Boccardo and B. Pellacci, Critical points of non–regular integral functionals, Rev. Math. Iberoam., 34 (2018), 1001-1020.
doi: 10.4171/RMI/1013.![]() ![]() ![]() |
[5] |
A. M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations, 34 (2009), 495-530.
doi: 10.1007/s00526-008-0193-2.![]() ![]() ![]() |
[6] |
A. M. Candela and G. Palmieri, Some abstract critical point theorems and applications, Discrete Contin. Dynam. Syst., 2009 (2009), 133-142.
![]() ![]() |
[7] |
A. M. Candela, G. Palmieri and A. Salvatore, Some results on supercritical quasilinear elliptic problems, Commun. Contemp. Math., (2019) 1950075 (20 pages).
doi: 10.1142/S0219199719500755.![]() ![]() |
[8] |
A. M. Candela, G. Palmieri and A. Salvatore, Infinitely many solutions for quasilinear elliptic equations with lack of symmetry, Nonlinear Anal., 172 (2018), 141-162.
doi: 10.1016/j.na.2018.02.011.![]() ![]() ![]() |
[9] |
A. M. Candela and A. Salvatore, Positive solutions for a generalized $p$–Laplacian type problem, Discrete Contin. Dyn. Syst. Ser. S, (to appear).
doi: 10.3934/dcdss.2020151.![]() ![]() |
[10] |
A. M. Candela and A. Salvatore, Infinitely many solutions for some nonlinear supercritical problems with break of symmetry, Opuscula Math., 39 (2019), 175-194.
doi: 10.7494/OpMath.2019.39.2.175.![]() ![]() ![]() |
[11] |
A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal., 6 (1995), 357-370.
doi: 10.12775/TMNA.1995.050.![]() ![]() ![]() |
[12] |
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008.![]() ![]() ![]() |
[13] |
G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$–Laplacian, Portugaliae Mathematica, 58 (2001), 339-378.
![]() ![]() |
[14] |
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
![]() ![]() |
[15] |
P. Lindqvist, On the equation $ {\rm {div}} (|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u=0$, Proc. Am. Math. Soc., 109 (1990), 157-164.
doi: 10.1090/S0002-9939-1990-1007505-7.![]() ![]() ![]() |
[16] |
J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differential Equations, 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5.![]() ![]() ![]() |
[17] |
N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20 (1967), 721-747.
doi: 10.1002/cpa.3160200406.![]() ![]() ![]() |