\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On absence of threshold resonances for Schrödinger and Dirac operators

  • * Corresponding author: Fritz Gesztesy

    * Corresponding author: Fritz Gesztesy 
Abstract Full Text(HTML) Related Papers Cited by
  • Using a unified approach employing a homogeneous Lippmann-Schwinger-type equation satisfied by resonance functions and basic facts on Riesz potentials, we discuss the absence of threshold resonances for Dirac and Schrödinger operators with sufficiently short-range interactions in general space dimensions.

    More specifically, assuming a sufficient power law decay of potentials, we derive the absence of zero-energy resonances for massless Dirac operators in space dimensions $ n \geqslant 3 $, the absence of resonances at $ \pm m $ for massive Dirac operators (with mass $ m > 0 $) in dimensions $ n \geqslant 5 $, and recall the well-known case of absence of zero-energy resonances for Schrödinger operators in dimension $ n \geqslant 5 $.

    Mathematics Subject Classification: Primary: 35J10, 35Q41, 45P05, 47A11, 47G10; Secondary: 35Q40, 47A10, 81Q10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1966.
    [2] C. Adam, B. Muratori and C. Nash, Zero modes of the Dirac operator in three dimensions, Phys. Rev. D (3), 60 (1999), 125001, 8pp. doi: 10.1103/PhysRevD.60.125001.
    [3] C. AdamB. Muratori and C. Nash, Degeneracy of zero modes of the Dirac operator in three dimensions, Phys. Lett. B, 485 (2000), 314-318.  doi: 10.1016/S0370-2693(00)00701-2.
    [4] C. Adam, B. Muratori and C. Nash, Multiple zero modes of the Dirac operator in three dimensions, Phys. Rev. D (3), 62 (2000), 085026, 9pp. doi: 10.1103/PhysRevD.62.085026.
    [5] C. AdamB. Muratori and C. Nash, Zero modes in finite range magnetic fields, Modern Phys. Lett. A, 15 (2000), 1577-1581.  doi: 10.1142/S0217732300001948.
    [6] Y. Aharonov and A. Casher, Ground state of a spin-$1/2$ charged particle in a two-dimensional magnetic field, Phys. Rev. A (3), 19 (1979), 2461-2462.  doi: 10.1103/PhysRevA.19.2461.
    [7] D. Aiba, Absence of zero resonances of massless Dirac operators, Hokkaido Math. J., 45 (2016), 263-270. 
    [8] S. Albeverio, F. Gesztesy and R. Høegh-Krohn, The low energy expansion in nonrelativistic scattering theory, Ann. Inst. H. Poincaré, 37 (1982), 1–28.
    [9] A. A. Balinsky and W. D. Evans, On the zero modes of Pauli operators, J. Funct. Anal., 179 (2001), 120-135.  doi: 10.1006/jfan.2000.3670.
    [10] A. A. Balinsky and W. D. Evans, On the zero modes of Weyl-Dirac operators and their multiplicity, Bull. London Math. Soc., 34 (2002), 236-242.  doi: 10.1112/S0024609301008736.
    [11] A. Balinsky and W. D. Evans, Zero modes of Pauli and Weyl–Dirac operators, Contemp. Math., 327 (2003), 1-9.  doi: 10.1090/conm/327/05800.
    [12] A. Balinsky and  W. D. EvansSpectral Analysis of Relativistic Operators, Imperial College Press, London, 2011. 
    [13] A. Balinsky, W. D. Evans and Y. Saito, Dirac–Sobolev inequalities and estimates for the zero modes of massless Dirac operators, J. Math. Phys., 49 (2008), 043514, 10pp. doi: 10.1063/1.2912229.
    [14] J. BehrndtF. GesztesyH. Holden and R. Nichols, Dirichlet-to Neumann maps, abstract Weyl–Titchmarsh $M$-functions, and a generalized index of unbounded meromorphic operator-valued functions, J. Diff. Eq., 261 (2016), 3551-3587.  doi: 10.1016/j.jde.2016.05.033.
    [15] R. D. Benguria and H. Van Den Bosch, A criterion for the existence of zero modes for the Pauli operator with fastly decaying fields, J. Math. Phys., 56 (2015), 052104, 7pp. doi: 10.1063/1.4920924.
    [16] H. BlancarteB. Grebert and R. Weder, High- and low-energy estimates for the Dirac equation, J. Math. Phys., 36 (1995), 991-1015.  doi: 10.1063/1.531138.
    [17] D. BolléF. Gesztesy and S. F. J. Wilk, New results for scattering on the line, Phys. Lett., 97A (1983), 30-34.  doi: 10.1016/0375-9601(83)90094-4.
    [18] D. BolléF. Gesztesy and S. F. J. Wilk, A complete treatment of low-energy scattering in one dimension, J. Operator Theory, 13 (1985), 3-31. 
    [19] D. BolléF. Gesztesy and C. Danneels, Threshold scattering in two dimensions, Ann. Inst. H. Poincaré, 48 (1988), 175-204. 
    [20] D. BolléF. GesztesyC. Danneels and S. F. J. Wilk, Threshold behavior and Levinson's theorem for two-dimensional scattering systems: a surprise, Phys. Rev. Lett., 56 (1986), 900-903. 
    [21] D. Bollé, F. Gesztesy and M. Klaus, Scattering theory for one-dimensional systems with $\int dx V(x) = 0$, J. Math. Anal. Appl., 122 (1987), 496–518; Errata, 130 (1988), 590. doi: 10.1016/0022-247X(87)90281-2.
    [22] A. Carey, F. Gesztesy, H. Grosse, G. Levitina, D. Potapov, F. Sukochev and D. Zanin, Trace formulas for a class of non-Fredholm operators: a review, Rev. Math. Phys., 28 (2016), 1630002 (55 pages). doi: 10.1142/S0129055X16300028.
    [23] A. Carey, F. Gesztesy, G. Levitina, R. Nichols, F. Sukochev and D. Zanin, On the limiting absorption principle for massless Dirac operators and properties of spectral shift functions, work in progress.
    [24] A. CareyF. GesztesyG. LevitinaD. PotapovF. Sukochev and D. Zanin, On index theory for non-Fredholm operators: A $(1+1)$-dimensional example, Math. Nachrichten, 289 (2016), 575-609.  doi: 10.1002/mana.201500065.
    [25] A. CareyF. GesztesyG. Levitina and F. Sukochev, On the index of a non-Fredholm model operator, Operators and Matrices, 10 (2016), 881-914.  doi: 10.7153/oam-10-50.
    [26] A. CareyF. GesztesyD. PotapovF. Sukochev and Y. Tomilov, On the Witten index in terms of spectral shift functions, J. Analyse Math., 132 (2017), 1-61.  doi: 10.1007/s11854-017-0003-x.
    [27] N. Du Plessis, An Introduction to Potential Theory, Oliver & Boyd, Edinburgh, 1970.
    [28] D. M. Elton, New examples of zero modes, J. Phys. A, 33 (2000), 7297-7303.  doi: 10.1088/0305-4470/33/41/304.
    [29] D. M. Elton, Spectral properties of the equation $(\nabla + i e A) \times u = \pm m u$, Proc. Roy. Soc. Edinburgh, 131 A (2001), 1065-1089.  doi: 10.1017/S030821050000127X.
    [30] D. M. Elton, The local structure of zero mode producing magnetic potentials, Commun. Math. Phys., 229 (2002), 121-139.  doi: 10.1007/s00220-002-0679-2.
    [31] M. B. ErdoğanM. Goldberg and W. R. Green, Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy, Commun. PDE, 39 (2014), 1936-1964.  doi: 10.1080/03605302.2014.921928.
    [32] M. B. ErdoğanM. Goldberg and W. R. Green, Limiting absorption principle and Strichartz estimates for Dirac operators in two and higher dimensions, Commun. Math. Phys., 367 (2019), 241-263.  doi: 10.1007/s00220-018-3231-8.
    [33] M. B. Erdoğan, M. Goldberg and W. R. Green, The massless Dirac equation in two dimensions: zero-energy obstructions and dispersive estimates, arXiv: 1807.00219.
    [34] M. B. ErdoğanM. Goldberg and W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in $ {\mathbb{R}}^3$, J. Eur. Math. Soc., 10 (2008), 507-531.  doi: 10.4171/JEMS/120.
    [35] M. B. ErdoğanM. Goldberg and W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions, Forum Math., 21 (2009), 687-722. 
    [36] M. B. Erdoğan and W. R. Green, Dispersive estimates for the Schrödinger equation for $C^{\frac{n-3}{2}}$ potentials in odd dimensions, Int. Math. Res. Notices, 2010 (2010), 2532-2565. 
    [37] M. B. Erdoğan and W. R. Green, Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energies, Trans. Amer. Math. Soc., 365 (2013), 6403-6440.  doi: 10.1090/S0002-9947-2013-05861-8.
    [38] M. B. Erdoğan and W. R. Green, The Dirac equation in two dimensions: Dispersive estimates and classification of threshold obstructions, Commun. Math. Phys., 352 (2017), 719-757.  doi: 10.1007/s00220-016-2811-8.
    [39] M. B. ErdoğanW. R. Green and E. Toprak, Dispersive estimates for massive Dirac operators in dimension two, J. Diff. Eq., 264 (2018), 5802-5837.  doi: 10.1016/j.jde.2018.01.019.
    [40] M. B. Erdoğan, W. R. Green and E. Toprak, Dispersive estimates for Dirac operators in dimension three with obstructions at threshold energies, Amer. J. Math., 141 (2019), 1217–1258, arXiv: 1609.05164. doi: 10.1353/ajm.2019.0031.
    [41] M. B. Erdoğan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: Ⅰ, Dyn. PDE, 1 (2004), 359-379.  doi: 10.4310/DPDE.2004.v1.n4.a1.
    [42] M. B. Erdoğan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: Ⅱ, J. Anal. Math., 99 (2006), 199-248.  doi: 10.1007/BF02789446.
    [43] L. Erdős and J. P. Solovej, The kernel of Dirac operators on $ {\mathbb{S}}^3$ and $ {\mathbb{R}}^3$, Rev. Math. Phys., 13 (2001), 1247-1280.  doi: 10.1142/S0129055X01000983.
    [44] G. B. Folland, Real Analysis. Modern Techniques and Their Applications, 2nd ed., Wiley, New York, 1999.
    [45] J. FröhlichE. H. Lieb and M. Loss, Stability of Coulomb systems with magnetic fields. I. The one-electron atom, Commun. Math. Phys., 104 (1986), 251-270.  doi: 10.1007/BF01211593.
    [46] F. Gesztesy and H. Holden, A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants, J. Math. Anal. Appl., 123 (1987), 181-198.  doi: 10.1016/0022-247X(87)90303-9.
    [47] F. GesztesyH. Holden and R. Nichols, On factorizations of analytic operator-valued functions and eigenvalue multiplicity questions, Erratum, 85 (2016), 301-302.  doi: 10.1007/s00020-016-2290-5.
    [48] F. GesztesyY. LatushkinM. Mitrea and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys., 12 (2005), 443-471. 
    [49] F. GesztesyM. MalamudM. Mitrea and S. Naboko, Generalized polar decompositions for closed operators in Hilbert spaces and some applications, Integral Eq. Operator Th., 64 (2009), 83-113.  doi: 10.1007/s00020-009-1678-x.
    [50] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^2({\mathbb{R}}^m)$, $m \geqslant 5$, Duke Math. J., 47 (1980), 57-80.  doi: 10.1215/S0012-7094-80-04706-7.
    [51] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^2({\mathbb{R}}^4)$, J. Math. Anal. Appl., 101 (1984), 397-422.  doi: 10.1016/0022-247X(84)90110-0.
    [52] A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611. 
    [53] A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., 16 (2004), 675-677.  doi: 10.1142/S0129055X04002102.
    [54] H. Kalf, T. Okaji and O. Yamada, The Dirac operator with mass $m_0 \geqslant 0$: Non-existence of zero modes and of threshold eigenvalues, Doc. Math., 20 (2015), 37–64; Addendum, Doc. Math. (to appear).
    [55] H. Kalf and O. Yamada, Essential self-adjointness of $n$-dimensional Dirac operators with a variable mass term, J. Math. Phys., 42 (2001), 2667-2676.  doi: 10.1063/1.1367331.
    [56] M. Klaus, Some applications of the Birman–Schwinger principle, Helv. Phts. Acta, 55 (1982), 49-68. 
    [57] M. Klaus, On coupling constant thresholds and related eigenvalue properties of Dirac operators, J. reine angew. Math., 362 (1985), 197-212. 
    [58] M. Klaus, On the Levinson theorem for Dirac operators, J. Math. Phys., 31 (1990), 182-190.  doi: 10.1063/1.528858.
    [59] M. Klaus and B. Simon, Coupling constant thresholds in nonrelativistic quantum mechanics. Ⅰ. Short-range two-body case, Ann. Phys., 130 (1980), 251-281.  doi: 10.1016/0003-4916(80)90338-3.
    [60] M. Loss and H.-T. Yau, Stability of Coulomb systems with magnetic fields. Ⅲ. Zero energy bound states of the Pauli operator, Commun. Math. Phys., 104 (1986), 283-290.  doi: 10.1007/BF01211595.
    [61] R. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Commun. Pure Appl. Math., 32 (1979), 783-795.  doi: 10.1002/cpa.3160320604.
    [62] M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56.  doi: 10.1016/0022-1236(82)90084-2.
    [63] R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed., Dover, New York, 2002.
    [64] L. Nirenberg and H. F. Walker, The null spaces of elliptic partial differential operators on $ {\mathbb{R}}^n$, J. Math. Anal. Appl., 42 (1973), 271-301.  doi: 10.1016/0022-247X(73)90138-8.
    [65] M. Persson, Zero modes for the magnetic Pauli operator in even-dimensional Euclidean space, Lett. Math. Phys., 85 (2008), 111-128.  doi: 10.1007/s11005-008-0265-4.
    [66] G. Rozenblum and N. Shirokov, Infiniteness of zero modes for the Pauli operator with singular magnetic field, J. Funct. Anal., 233 (2006), 135-172.  doi: 10.1016/j.jfa.2005.08.001.
    [67] Y. Saitō and T. Umeda, The zero modes and zero resonances of massless Dirac operators, Hokkaido Math. J., 37 (2008), 363-388.  doi: 10.14492/hokmj/1253539560.
    [68] Y. Saitō and T. Umeda, The asymptotic limits of zero modes of massless Dirac operators, Lett. Math. Phys., 83 (2008), 97-106.  doi: 10.1007/s11005-007-0207-6.
    [69] Y. Saitō and T. Umeda, Eigenfunctions at the threshold energies of magnetic Dirac operators, Rev. Math. Phys., 23 (2011), 155-178.  doi: 10.1142/S0129055X11004254.
    [70] Y. Saitō and T. Umeda, A sequence of zero modes of Weyl–Dirac operators and an associated sequence of solvable polynomials, in Spectral theory, Function Spaces and Inequalities. New Techniques and Recent Trends, B. M. Brown, J. Lang, and I. G. Wood (eds.), Operator Theory: Advances and Applications, Birkhäuser, Springer, Basel, 219 (2012), 197–209. doi: 10.1007/978-3-0348-0263-5_11.
    [71] K. M. Schmidt, Spectral properties of rotationally symmetric massless Dirac operators, Lett. Math. Phys., 92 (2010), 231-241.  doi: 10.1007/s11005-010-0393-5.
    [72] K. M. Schmidt and T. Umeda, Spectral properties of massless Dirac operators with real-valued potentials, RIMS Kôkyûroku Bessatsu, B45 (2014), 25–30.
    [73] K. M. Schmidt and T. Umeda, Schnol's theorem and spectral properties of massless Dirac operators with scalar potentials, Lett. Math. Phys., 105 (2015), 1479-1497.  doi: 10.1007/s11005-015-0799-1.
    [74] E. M. SteinSingular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. 
    [75] B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin, 1992. doi: 10.1007/978-3-662-02753-0.
    [76] E. Toprak, A weighted estimate for two dimensional Schrödinger, matrix Schrödinger, and wave equations with resonance of the first kind at zero energy, J. Spectral Th., 7 (2017), 1235-1284.  doi: 10.4171/JST/189.
    [77] K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalues, Commun. Math. Phys., 259 (2005), 475-509.  doi: 10.1007/s00220-005-1375-9.
    [78] Y. Zhong and G. L. Gao, Some new results about the massless Dirac operator, J. Math. Phys., 54 (2013), 043510, 25pp. doi: 10.1063/1.4799936.
  • 加载中
SHARE

Article Metrics

HTML views(551) PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return