• Previous Article
    On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model
  • DCDS-S Home
  • This Issue
  • Next Article
    A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation
December  2020, 13(12): 3391-3400. doi: 10.3934/dcdss.2020246

Feynman path formula for the time fractional Schrödinger equation

Laboratoire de Mathématiques, Université de Poitiers. teleport 2, BP 179, 86960 Chassneuil du Poitou, Cedex, France

Received  February 2019 Revised  April 2019 Published  December 2020 Early access  January 2020

In this paper, we define $ E_ \alpha(t^ \alpha A) $, where $ A $ is the generator of an uniformly bounded ($ C_0 $) semigroup and $ E_ \alpha(z) $ the Mittag-Leffler function. Since the mapping $ t\mapsto E_ \alpha(t^ \alpha A) $ has not the semigroup property, we cannot use the Trotter formula for representing the Feynman operator calculus. Thus for the Hamiltonian $ H_ \alpha = -\frac{{\hbar_ \alpha2}}{{2m}}\Delta +V(x) $, we express $ E_ \alpha(t^ \alpha H_ \alpha ) $ by subordination principle of the Feynman path integral and we retrieve the corresponding Green function.

Citation: Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246
References:
[1]

B. N. Achar, B. T. Yale and J. Hanneken, Time fractional Schrodinger equation revisited, Adv. Math. Phys., 2013 (2013), Art. ID 290216, 11 pp.

[2]

E. Bajlekova, Fractional Evolution Equations in Banach Spaces, , Einhoven University of Technology, Ph.D. Dissertation, 2001.

[3]

P. Chernoff, Semigroup product formulas and addition of unbounded operators,, Bull. Amer. Math. Soc., 76 (1970), 395-398.  doi: 10.1090/S0002-9904-1970-12489-2.

[4]

H. Emamirad and A. Rougirel, A functional calculus approach for rational approximation with nonuniform partitions,, Discrete Contin. Dyn. Syst., 22 (2008), 955-972.  doi: 10.3934/dcds.2008.22.955.

[5]

H. Emamirad and A. Rougirel, Solution operators of three time variables for fractional linear problems, Math. Meth. Appl. Sci., 40 (2017), 1553-1572.  doi: 10.1002/mma.4079.

[6]

H. Emamirad and A. Rougirel, Time fractional linear problem in $L^2(\mathbb mathbb{R}^{d})$,, Bull. Sci. Math., 144 (2018), 1-38.  doi: 10.1016/j.bulsci.2018.01.002.

[7]

H. Emamirad and A. Rougirel, Time fractional Schrödinger equation,, J. Evol. Equ., 19 (2019), 1-15. 

[8]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition. Emended and with a preface by Daniel F. Styer. Dover Publications, Inc., Mineola, NY, 2010.

[9]

D. Fujiwara, Rigorous Time Slicing Approach to Feynman Path Integrals, Springer Heidelberg, New York, 2017. doi: 10.1007/978-4-431-56553-6.

[10]

T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus, Springer Heidelberg, New York, 2016. doi: 10.1007/978-3-319-27595-6.

[11]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.

[12] G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus,, The Clarendon Press, Oxford University Press, New York, 2000. 
[13]

F. MainardiY. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Frac. Calc. Appl. Anal., 4 (2001), 153-192. 

[14]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339-3352.  doi: 10.1063/1.1769611.

[15]

J. Peng and K. Li, A note on property of the Mittag-Leffler function, J. Math. Anal. Appl., 370 (2010), 635-638.  doi: 10.1016/j.jmaa.2010.04.031.

[16]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, Boston, Berlin, 1993. doi: 10.1007/978-3-0348-8570-6.

show all references

References:
[1]

B. N. Achar, B. T. Yale and J. Hanneken, Time fractional Schrodinger equation revisited, Adv. Math. Phys., 2013 (2013), Art. ID 290216, 11 pp.

[2]

E. Bajlekova, Fractional Evolution Equations in Banach Spaces, , Einhoven University of Technology, Ph.D. Dissertation, 2001.

[3]

P. Chernoff, Semigroup product formulas and addition of unbounded operators,, Bull. Amer. Math. Soc., 76 (1970), 395-398.  doi: 10.1090/S0002-9904-1970-12489-2.

[4]

H. Emamirad and A. Rougirel, A functional calculus approach for rational approximation with nonuniform partitions,, Discrete Contin. Dyn. Syst., 22 (2008), 955-972.  doi: 10.3934/dcds.2008.22.955.

[5]

H. Emamirad and A. Rougirel, Solution operators of three time variables for fractional linear problems, Math. Meth. Appl. Sci., 40 (2017), 1553-1572.  doi: 10.1002/mma.4079.

[6]

H. Emamirad and A. Rougirel, Time fractional linear problem in $L^2(\mathbb mathbb{R}^{d})$,, Bull. Sci. Math., 144 (2018), 1-38.  doi: 10.1016/j.bulsci.2018.01.002.

[7]

H. Emamirad and A. Rougirel, Time fractional Schrödinger equation,, J. Evol. Equ., 19 (2019), 1-15. 

[8]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition. Emended and with a preface by Daniel F. Styer. Dover Publications, Inc., Mineola, NY, 2010.

[9]

D. Fujiwara, Rigorous Time Slicing Approach to Feynman Path Integrals, Springer Heidelberg, New York, 2017. doi: 10.1007/978-4-431-56553-6.

[10]

T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus, Springer Heidelberg, New York, 2016. doi: 10.1007/978-3-319-27595-6.

[11]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.

[12] G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus,, The Clarendon Press, Oxford University Press, New York, 2000. 
[13]

F. MainardiY. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Frac. Calc. Appl. Anal., 4 (2001), 153-192. 

[14]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339-3352.  doi: 10.1063/1.1769611.

[15]

J. Peng and K. Li, A note on property of the Mittag-Leffler function, J. Math. Anal. Appl., 370 (2010), 635-638.  doi: 10.1016/j.jmaa.2010.04.031.

[16]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, Boston, Berlin, 1993. doi: 10.1007/978-3-0348-8570-6.

[1]

Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029

[2]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033

[3]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050

[4]

Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267

[5]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058

[6]

Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2417-2434. doi: 10.3934/dcdss.2020171

[7]

Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3577-3587. doi: 10.3934/dcdss.2020428

[8]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031

[9]

Ricardo Almeida, M. Luísa Morgado. Optimality conditions involving the Mittag–Leffler tempered fractional derivative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 519-534. doi: 10.3934/dcdss.2021149

[10]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control and Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

[11]

Magnus Aspenberg, Viviane Baladi, Juho Leppänen, Tomas Persson. On the fractional susceptibility function of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 679-706. doi: 10.3934/dcds.2021133

[12]

Minvydas Ragulskis, Zenonas Navickas. Hash function construction based on time average moiré. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 1007-1020. doi: 10.3934/dcdsb.2007.8.1007

[13]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[14]

Miaohua Jiang. Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 967-983. doi: 10.3934/dcds.2015.35.967

[15]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure and Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[16]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443

[17]

Carlo Sinestrari. Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure and Applied Analysis, 2004, 3 (4) : 757-774. doi: 10.3934/cpaa.2004.3.757

[18]

Giovanni Colombo, Thuy T. T. Le. Higher order discrete controllability and the approximation of the minimum time function. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4293-4322. doi: 10.3934/dcds.2015.35.4293

[19]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[20]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (291)
  • HTML views (345)
  • Cited by (0)

Other articles
by authors

[Back to Top]