[1]
|
K. A. Abro and J. Gómez-Aguilar, A comparison of heat and mass transfer on a waltersb fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the fox-H function, The European Physical Journal Plus, 134 (2019), 101.
|
[2]
|
A. Allwright and A. Atangana, Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 443-466.
doi: 10.3934/dcdss.2020025.
|
[3]
|
J. Alzabut, T. Abdeljawad, F. Jarad and W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), Paper No. 101, 12 pp.
doi: 10.1186/s13660-019-2052-4.
|
[4]
|
A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular Kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A.
|
[5]
|
E. Balcı, İ. Öztürk and S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chaos Solitons Fractals, 123 (2019), 43-51.
doi: 10.1016/j.chaos.2019.03.032.
|
[6]
|
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, 2012.
doi: 10.1142/9789814355216.
|
[7]
|
E. Bas, B. Acay and R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings, Chaos, 29 (2019), 023110, 7 pp.
doi: 10.1063/1.5082390.
|
[8]
|
E. Bonyah, A. Atangana and M. A. Khan, Modeling the spread of computer virus via Caputo fractional derivative and the beta-derivative, Asia Pacific Journal on Computational Engineering, 4 (2017), 1.
doi: 10.1186/s40540-016-0019-1.
|
[9]
|
A. G. Bratsos and A. Q. M. Khaliq, An exponential time differencing method of lines for Burgers–Fisher and coupled Burgers equations, J. Comput. Appl. Math., 356 (2019), 182-197.
doi: 10.1016/j.cam.2019.01.028.
|
[10]
|
H. Bulut, D. Kumar, J. Singh, R. Swroop and H. M. Baskonus, Analytic study for a fractional model of HIV infection of CD4+ T lymphocyte cells, Math. Nat. Sci., 2 (2018), 33-43.
|
[11]
|
M. Caputo, Linear models of dissipation whose Q is almost frequency independentII, Geophysical Journal International, 13 (1967), 529-539.
|
[12]
|
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13.
|
[13]
|
A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer, 2014.
|
[14]
|
V. Chandraker, A. Awasthi and S. Jayaraj, Numerical treatment of Burger-Fisher equation, Procedia Technology, 25 (2016), 1217-1225.
|
[15]
|
W. Chen, L. Ye and H. Sun, Fractional diffusion equations by the Kansa method, Comput. Math. Appl., 59 (2010), 1614-1620.
doi: 10.1016/j.camwa.2009.08.004.
|
[16]
|
F. Evirgen and M. Yavuz, An alternative approach for nonlinear optimization problem with Caputo-Fabrizio derivative, ITM Web of Conferences: EDP Sciences, 22, (2018), 01009.
doi: 10.1051/itmconf/20182201009.
|
[17]
|
A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos Solitons Fractals, 39 (2009), 1486-1492.
doi: 10.1016/j.chaos.2007.06.034.
|
[18]
|
Z. Hammouch and T. Mekkaoui, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, Journal MESA, 5 (2014), 489-498.
|
[19]
|
Z. Hammouch and T. Mekkaoui, Approximate analytical and numerical solutions to fractional KPP-like equations, Gen. Math. Notes, 14 (2013), 1-9.
|
[20]
|
Z. Hammouch, T. Mekkaoui and F. B. Belgacem, Numerical simulations for a variable order fractional Schnakenberg model, AIP Conference Proceedings, 1637 (2014), 1450-1455.
doi: 10.1063/1.4907312.
|
[21]
|
J. Hristov, Space-fractional diffusion with a potential power-law coefficient: Transient approximate solution, Progress in Fractional Differentiation and Applications, 3 (2017), 19-39.
|
[22]
|
H. N. A. Ismail and A. A. A. Rabboh, A restrictive padé approximation for the solution of the generalized Fisher and Burger-Fisher equations, Appl. Math. Comput., 154 (2004), 203-210.
doi: 10.1016/S0096-3003(03)00703-3.
|
[23]
|
F. Jarad and T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 709-722.
doi: 10.3934/dcdss.2020039.
|
[24]
|
F. Jarad, T. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16-20.
doi: 10.1016/j.chaos.2018.10.006.
|
[25]
|
D. Kaya and S. El-Sayed, A numerical simulation and explicit solutions of the generalized Burgers–Fisher equation, Appl. Math. Comput., 152 (2004), 403-413.
doi: 10.1016/S0096-3003(03)00565-4.
|
[26]
|
D. Kaya, S. Gülbahar, A. Yokuş and M. Gülbahar, Solutions of the fractional combined KdV-mKdV equation with collocation method using radial basis function and their geometrical obstructions, Adv. Difference Equ., 2018 (2018), Paper No. 77, 16 pp.
doi: 10.1186/s13662-018-1531-0.
|
[27]
|
D. Kaya, A. Yokus and U. Demiroglu, Comparison of exact and numerical solutions for the Sharma-Tasso-Olver equation, In Numerical Solutions of Realistic Nonlinear Phenomena, Springer, Cham, (2020), 53–65.
|
[28]
|
A. Keten, M. Yavuz and D. Baleanu, Nonlocal cauchy problem via a fractional operator involving power kernel in banach spaces, Fractal Fract., 3 (2019), 27.
doi: 10.3390/fractalfract3020027.
|
[29]
|
R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
doi: 10.1016/j.cam.2014.01.002.
|
[30]
|
D. Kumar, J. Singh, H. M. Baskonus and H. Bulut, An effective computational approach for solving local fractional telegraph equations, Nonlinear Sci. Lett. A: Math. Phys. Mech, 8 (2017), 200-206.
|
[31]
|
V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Difference Equ., 2016 (2016), Paper No. 164, 17 pp.
doi: 10.1186/s13662-016-0891-6.
|
[32]
|
P. A. Naik, M. Yavuz, S. Qureshi, J. Zu and S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, The European Physical Journal Plus, 135 (2020), 1-42.
|
[33]
|
I. Podlubny, Fractional Differential Equation: An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of their Solution and some of their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.
|
[34]
|
M. B. Riaz, N. A. Asif, A. Atangana and M. I. Asjad, Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 645-664.
doi: 10.3934/dcdss.2019041.
|
[35]
|
K. M. Saad, A. Atangana and D. Baleanu, New fractional derivatives with non-singular kernel applied to the Burgers equation, Chaos, 28 (2018), 063109, 6 pp.
doi: 10.1063/1.5026284.
|
[36]
|
N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800.
doi: 10.1016/j.rinp.2017.01.025.
|
[37]
|
J. Singh, D. Kumar, Z. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515.
doi: 10.1016/j.amc.2017.08.048.
|
[38]
|
R. Subashini, C. Ravichandran, K. Jothimani and H. M. Baskonus, Existence results of Hilfer integro-differential equations with fractional order, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 911-923.
doi: 10.3934/dcdss.2020053.
|
[39]
|
T. A. Sulaiman, M. Yavuz, H. Bulut and H. M. Baskonus, Investigation of the fractional coupled viscous Burgers' equation involving Mittag-Leffler kernel, Phys. A, 527 (2019), 121126, 20 pp.
doi: 10.1016/j.physa.2019.121126.
|
[40]
|
K. A. Touchent, Z. Hammouch, T. Mekkaoui and B. M. Belgacem, Implementation and convergence analysis of homotopy perturbation coupled with sumudu transform to construct solutions of local-fractional PDEs, Fractal Fract., 2 (2018), 22.
doi: 10.3390/fractalfract2030022.
|
[41]
|
F. Usta and Z. Sarikaya, On generalization of pachpatte type inequalities for conformable fractional integral, TWMS Journal of Applied and Engineering Mathematics, 8 (2018), 106.
|
[42]
|
F. Usta and M. Z. Sarikaya, The analytical solution of Van der Pol and Lienard differential equations within conformable fractional operator by retarded integral inequalities, Demonstr. Math., 52 (2019), 204-212.
doi: 10.1515/dema-2019-0017.
|
[43]
|
P. Veeresha, D. G. Prakasha, J. Singh, D. Kumar and D. Baleanu, Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory, Chinese J. Phys., 68 (2020), 65-78.
doi: 10.1016/j.cjph.2020.08.023.
|
[44]
|
X. Wang and Y. Lu, Exact solutions of the extended Burgers–Fisher equation, Chinese Phys. Lett., 7 (1990), 145-147.
doi: 10.1088/0256-307X/7/4/001.
|
[45]
|
A.-M. Wazwaz, The tanh method for generalized forms of nonlinear heat conduction and Burgers–Fisher equations, Appl. Math. Comput., 169 (2005), 321-338.
doi: 10.1016/j.amc.2004.09.054.
|
[46]
|
X. Xiao-Jun, H. M. Srivastava and J. Machado, A new fractional derivative without singular kernel, Therm. Sci., 20 (2016), 753-756.
|
[47]
|
X.-J. Yang, F. Gao, J. A. Tenreiro Machado and D. Baleanu, A new fractional derivative involving the normalized sinc function without singular kernel, The European Physical Journal Special Topics, 226 (2017), 3567-3575.
doi: 10.1140/epjst/e2018-00020-2.
|
[48]
|
M. Yavuz, Characterizations of two different fractional operators without singular kernel, Math. Model. Nat. Phenom., 14 (2019), 302, 13 pp.
doi: 10.1051/mmnp/2018070.
|
[49]
|
M. Yavuz, Dynamical behaviors of separated homotopy method defined by conformable operator, Konuralp J. Math., 7 (2019), 1-6.
|
[50]
|
M. Yavuz, Novel solution methods for initial boundary value problems of fractional order with conformable differentiation, Int. J. Optim. Control. Theor. Appl. IJOCTA, 8 (2018), 1-7.
doi: 10.11121/ijocta.01.2018.00540.
|
[51]
|
M. Yavuz and T. Abdeljawad, Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel, Adv. Difference Equ., 2020 (2020), Paper No. 367, 18 pp.
doi: 10.1186/s13662-020-02828-1.
|
[52]
|
M. Yavuz and E. Bonyah, New approaches to the fractional dynamics of schistosomiasis disease model, Phys. A, 525 (2019), 373-393.
doi: 10.1016/j.physa.2019.03.069.
|
[53]
|
M. Yavuz and N. Özdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fract., 2 (2018), 3.
doi: 10.3390/fractalfract2010003.
|
[54]
|
M. Yavuz and N. Özdemir, Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 995-1006.
doi: 10.3934/dcdss.2020058.
|
[55]
|
M. Yavuz and N. Özdemir, A different approach to the European option pricing model with new fractional operator, Math. Model. Nat. Phenom., 13 (2018), Paper No. 12, 12 pp.
doi: 10.1051/mmnp/2018009.
|
[56]
|
M. Yavuz and N. Özdemir, New numerical techniques for solving fractional partial differential equations in conformable sense, in: Non-Integer Order Calculus and its Applications, Springer, 496 (2019), 49–62.
|
[57]
|
M. Yavuz, N. Özdemir and H. M. Baskonus, Solutions of partial differential equations using fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215.
doi: 10.1140/epjp/i2018-12051-9.
|
[58]
|
M. Yavuz and N. Sene, Stability analysis and numerical computation of the fractional Predator-Prey model with the harvesting rate, Fractal and Fractional, 4 (2020), 35.
|
[59]
|
M. Yavuz and A. Yokus, Analytical and numerical approaches to nerve impulse model of fractional–order, Numer. Methods Partial Differential Equations, 36 (2020), 1348-1368.
doi: 10.1002/num.22476.
|
[60]
|
A. Yokus, On the exact and numerical solutions to the FitzHugh-Nagumo equation, Internat. J. Modern Phys. B, 34 (2020), 2050149, 12 pp.
doi: 10.1142/S0217979220501490.
|
[61]
|
A. Yokuş, Comparison of Caputo and conformable derivatives for time-fractional Korteweg-de Vries equation via the finite difference method, Internat. J. Modern Phys. B, 32 (2018), 1850365, 12 pp.
doi: 10.1142/S0217979218503654.
|
[62]
|
A. Yokus, H. M. Baskonus, T. A. Sulaiman and H. Bulut, Numerical simulation and solutions of the two-component second order KdV evolutionary system, Numer. Methods Partial Differential Equations, 34 (2018), 211-227.
doi: 10.1002/num.22192.
|
[63]
|
A. Yokuş and H. Bulut, On the numerical investigations to the Cahn-Allen equation by using finite difference method, Int. J. Optim. Control. Theor. Appl. IJOCTA, 9 (2019), 18-23.
doi: 10.11121/ijocta.01.2019.00561.
|
[64]
|
A. Yokus and D. Kaya, Numerical and exact solutions for time fractional Burgers equation, J. Nonlinear Sci. Appl., 10 (2017), 3419-3428.
doi: 10.22436/jnsa.010.07.06.
|
[65]
|
A. Yokus, B. Kuzu and U. Demiroğlu, Investigation of solitary wave solutions for the $(3+1)$-dimensional Zakharov-Kuznetsov equation, Internat. J. Modern Phys. B, 33 (2019), 1950350, 19 pp.
doi: 10.1142/S0217979219503508.
|
[66]
|
A. Yokus, T. A. Sulaiman and H. Bulut, On the analytical and numerical solutions of the Benjamin-Bona-Mahony equation, Optical and Quantum Electronics, 50 (2018), 31.
|
[67]
|
C.-G. Zhu and W.-S. Kang, Numerical solution of Burgers–Fisher equation by cubic B-Spline quasi-interpolation, Appl. Math. Comput., 216 (2010), 2679-2686.
doi: 10.1016/j.amc.2010.03.113.
|